Evaluation of Ultrasound Waves on S. cerevisiae Stimulation in the Bioethanol Production from Rice Bran

2020 ◽  
Vol 13 (1) ◽  
pp. 314-324 ◽  
Author(s):  
Mônica Stobienia ◽  
Daneysa Lahis Kalschne ◽  
Bianca Peron-Schlosser ◽  
Luciane Maria Colla ◽  
Ilton José Baraldi ◽  
...  
ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


2009 ◽  
Vol 108 (6) ◽  
pp. 524-526 ◽  
Author(s):  
Masanori Watanabe ◽  
Makoto Takahashi ◽  
Kazuo Sasano ◽  
Takashi Kashiwamura ◽  
Yuich Ozaki ◽  
...  

Author(s):  
Hadiza Musa ◽  
Abdullahi Imam Abdullahi ◽  
Rabi’a Ibrahim El-Yakub ◽  
Ibrahim Alhaji Yerima

Second generation ethanol is produced from non-food based including waste from food crops, wood chips and agricultural residue. Lignocellulosic and starchy materials in them are converted to fermentable sugars which are further processed to produce bioethanol. Rice bran is an agricultural residue with abundant carbohydrate for bioconversion into ethanol. This study was designed to evaluate the potential of two varieties of rice bran (Sipi and Wita) to produce bioethanol. Compositional analysis of Wita rice bran showed 40% cellulose, 23% hemicellulose and 16% lignin content. Sipi variety contains 35% cellulose, 27% hemicellulose and 13% lignin content. Sodium hydroxide pretreatment was carried out at different concentrations (0.5%, 1%, 2% and 3%) and residence time of (15, 30, 60, and 90min). It was observed from the present study, pretreatment of rice bran with 2% NaOH for 90min is considered as effective pretreatment condition for bioethanol production from rice bran. Simultaneous saccharification and fermentation of cellulosic biomass was carried out for 72h with Saccharomyces cerevisae and Mucor indicus. Fermentation of Wita variety with S.cerevisiae produced highest bioethanol yield of 1.36% while Mucor indicus produced 0.75% bioethanol yield. From the result of these findings, it can be concluded that rice bran could be considered as a promising substrate for the fermentation of second generation ethanol.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 2951-2966
Author(s):  
Francieli Begnini Siepmann ◽  
◽  
Daneysa Lahis Kalschne ◽  
Caroline Zabotti ◽  
Eder Lisandro de Moraes Flores ◽  
...  

Rice bran is a by-product of rice production with a high carbohydrate and starch content and the potential for bioethanol production by alcoholic fermentation. This article describes bioethanol production by Saccharomyces cerevisiae from hydrolyzed defatted rice bran (DRB) a rice by-product applying ultrasonic treatment and protease addition, as well as a sequential strategy of experimental design (SEED). In the first Central Composite Rotatable Design (CCRD), the temperature (25-30 °C) and inoculum concentration (0.5-50 g L-1) had positive effects on bioethanol production, while the effect of pH (4.0-6.0) was not significant. In the second CCRD, the temperature (28-35 °C) and inoculum concentration (10-70 g L-1) had negative and positive effects on bioethanol production (p < 0.05). Protease addition (15 µL g-1) increased the conversion of substrate into bioethanol by 76%. The optimized conditions for the production of 40.7 g L-1 bioethanol were a temperature of 31.5 °C and an inoculum concentration of 70 g L-1. Validation in a benchtop bioreactor produced 40.0 g L-1 of bioethanol from hydrolyzed DRB, and the SEED was characterized as a useful tool to improve bioethanol production from DRB. Furthermore, the DRB proved to be a by-product with great potential for bioethanol production, derived from alternative sources not commonly used in human food.


2018 ◽  
Vol 40 (1) ◽  
pp. 35000 ◽  
Author(s):  
Francieli Begnini Siepmann ◽  
Cristiane Canan ◽  
Manoella Moura Monteiro de Jesus ◽  
Catiussa Mayara Pazuch ◽  
Eliane Colla

2021 ◽  
Author(s):  
R.V. Beladhadi ◽  
Kumar Shankar ◽  
S.K. Jayalakshmi ◽  
kuruba sreeram

Abstract Purpose: This study focuses to assess the potentiality of the locally isolated Burkholderia sp SMB1. It was aimed for the cocktail of lignocellulolytic enzyme production involved in the depolymerization of the agro-wastes to release sugars for bioethanol production. Methods: The optimization of enzyme cocktail (lignolytic, cellulolytic, hemicellulolytic) production by isolated bacterium utilizing inexpensive substrates like bran and straw of rice was done using response surface methodology. Further this cocktail secreted by the bacterium at optimized conditions was employed for saccharifying untreated agro-wastes for sugars production which were fermented to bioethanol by S. cerevisiae.Results: This strain produced high titer of cellulase (10.8 U/mL), xylanase (76 U/mL), mannanase (14.23 U/mL), pectinase (62.18 U/mL) and laccase (24.25 U/mL) using rice bran at 7 pH and 40 oC using 10% (w/v) of rice bran. The production of cocktail of enzymes was slightly increased by adding CaCO3 (2mM) in the growth medium. This cocktail was able to hydrolyze untreated agro-wastes to release highest reducing sugars 28.5 g/L using untreated corn husk after 24 h of saccharification process. These sugars of corn husk were fermented by S. cerevisiae to produce highest 9.04 gL-1 bioethanol. Conclusion: This paper represents the exploitation of the locally isolated strain for the production of lignocellulolytic enzymes using rice bran and straw for the first time promising the novelty of the study. This study helps in waste disposal process by valorizing the waste biomass to produce value added products like sugars, bioethanol and hence increases agricultural economy.


Author(s):  
Hadiza Musa ◽  
Abdullahi Imam Abdullahi ◽  
Rabi’a Ibrahim El-Yakub ◽  
Ibrahim Alhaji Yerima

Second generation ethanol is produced from non-food based including waste from food crops, wood chips and agricultural residue. Lignocellulosic and starchy materials in them are converted to fermentable sugars which are further processed to produce bioethanol. Rice bran is an agricultural residue with abundant carbohydrate for bioconversion into ethanol. This study was designed to evaluate the potential of two varieties of rice bran (Sipi and Wita) to produce bioethanol. Compositional analysis of Wita rice bran showed 40% cellulose, 23% hemicellulose and 16% lignin content. Sipi variety contains 35% cellulose, 27% hemicellulose and 13% lignin content. Sodium hydroxide pretreatment was carried out at different concentrations (0.5%, 1%, 2% and 3%) and residence time of (15, 30, 60, and 90min). It was observed from the present study, pretreatment of rice bran with 2% NaOH for 90min is considered as effective pretreatment condition for bioethanol production from rice bran. Simultaneous saccharification and fermentation of cellulosic biomass was carried out for 72h with Saccharomyces cerevisae and Mucor indicus. Fermentation of Wita variety with S.cerevisiae produced highest bioethanol yield of 1.36% while Mucor indicus produced 0.75% bioethanol yield. From the result of these findings, it can be concluded that rice bran could be considered as a promising substrate for the fermentation of second generation ethanol.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
C Charkhonpunya ◽  
S Sireeratawong ◽  
S Komindr ◽  
N Lerdvuthisopon

Sign in / Sign up

Export Citation Format

Share Document