Production of Cocktail of Lignolytic, Cellulolytic and Hemicellulolytic Enzymes by the Novel Bacterium Burkholderia Sp SMB1 Utilizing Rice Bran and Straw: Application in the Saccharification of Untreated Agro-Wastes for Bioethanol Production

Author(s):  
R.V. Beladhadi ◽  
Kumar Shankar ◽  
S.K. Jayalakshmi ◽  
kuruba sreeram

Abstract Purpose: This study focuses to assess the potentiality of the locally isolated Burkholderia sp SMB1. It was aimed for the cocktail of lignocellulolytic enzyme production involved in the depolymerization of the agro-wastes to release sugars for bioethanol production. Methods: The optimization of enzyme cocktail (lignolytic, cellulolytic, hemicellulolytic) production by isolated bacterium utilizing inexpensive substrates like bran and straw of rice was done using response surface methodology. Further this cocktail secreted by the bacterium at optimized conditions was employed for saccharifying untreated agro-wastes for sugars production which were fermented to bioethanol by S. cerevisiae.Results: This strain produced high titer of cellulase (10.8 U/mL), xylanase (76 U/mL), mannanase (14.23 U/mL), pectinase (62.18 U/mL) and laccase (24.25 U/mL) using rice bran at 7 pH and 40 oC using 10% (w/v) of rice bran. The production of cocktail of enzymes was slightly increased by adding CaCO3 (2mM) in the growth medium. This cocktail was able to hydrolyze untreated agro-wastes to release highest reducing sugars 28.5 g/L using untreated corn husk after 24 h of saccharification process. These sugars of corn husk were fermented by S. cerevisiae to produce highest 9.04 gL-1 bioethanol. Conclusion: This paper represents the exploitation of the locally isolated strain for the production of lignocellulolytic enzymes using rice bran and straw for the first time promising the novelty of the study. This study helps in waste disposal process by valorizing the waste biomass to produce value added products like sugars, bioethanol and hence increases agricultural economy.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2023
Author(s):  
Samantha R. Hartmann ◽  
Daniel J. Goetschius ◽  
Jiafen Hu ◽  
Joshua J. Graff ◽  
Carol M. Bator ◽  
...  

Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. However, studies have been hampered due to restricted tropism that makes production and purification of high titer virus problematic. This issue has been overcome by developing alternative HPV production methods such as virus-like particles (VLPs), which are devoid of a native viral genome. Structural studies have been limited in resolution due to the heterogeneity, fragility, and stability of the VLP capsids. The mouse papillomavirus (MmuPV1) presented here has provided the opportunity to study a native papillomavirus in the context of a common laboratory animal. Using cryo EM to solve the structure of MmuPV1, we achieved 3.3 Å resolution with a local symmetry refinement method that defined smaller, symmetry related subparticles. The resulting high-resolution structure allowed us to build the MmuPV1 asymmetric unit for the first time and identify putative L2 density. We also used our program ISECC to quantify capsid flexibility, which revealed that capsomers move as rigid bodies connected by flexible linkers. The MmuPV1 flexibility was comparable to that of a HPV VLP previously characterized. The resulting MmuPV1 structure is a promising step forward in the study of papillomavirus and will provide a framework for continuing biochemical, genetic, and biophysical research for papillomaviruses.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 2951-2966
Author(s):  
Francieli Begnini Siepmann ◽  
◽  
Daneysa Lahis Kalschne ◽  
Caroline Zabotti ◽  
Eder Lisandro de Moraes Flores ◽  
...  

Rice bran is a by-product of rice production with a high carbohydrate and starch content and the potential for bioethanol production by alcoholic fermentation. This article describes bioethanol production by Saccharomyces cerevisiae from hydrolyzed defatted rice bran (DRB) a rice by-product applying ultrasonic treatment and protease addition, as well as a sequential strategy of experimental design (SEED). In the first Central Composite Rotatable Design (CCRD), the temperature (25-30 °C) and inoculum concentration (0.5-50 g L-1) had positive effects on bioethanol production, while the effect of pH (4.0-6.0) was not significant. In the second CCRD, the temperature (28-35 °C) and inoculum concentration (10-70 g L-1) had negative and positive effects on bioethanol production (p < 0.05). Protease addition (15 µL g-1) increased the conversion of substrate into bioethanol by 76%. The optimized conditions for the production of 40.7 g L-1 bioethanol were a temperature of 31.5 °C and an inoculum concentration of 70 g L-1. Validation in a benchtop bioreactor produced 40.0 g L-1 of bioethanol from hydrolyzed DRB, and the SEED was characterized as a useful tool to improve bioethanol production from DRB. Furthermore, the DRB proved to be a by-product with great potential for bioethanol production, derived from alternative sources not commonly used in human food.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3947 ◽  
Author(s):  
Nazia Hossain ◽  
Alyaa Nabihah Razali ◽  
Teuku Meurah Indra Mahlia ◽  
Tamal Chowdhury ◽  
Hemal Chowdhury ◽  
...  

Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US$/y, net production cost 869347 US$ and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 87
Author(s):  
Ali Umut Şen ◽  
Helena Pereira

In recent years, there has been a surge of interest in char production from lignocellulosic biomass due to the fact of char’s interesting technological properties. Global char production in 2019 reached 53.6 million tons. Barks are among the most important and understudied lignocellulosic feedstocks that have a large potential for exploitation, given bark global production which is estimated to be as high as 400 million cubic meters per year. Chars can be produced from barks; however, in order to obtain the desired char yields and for simulation of the pyrolysis process, it is important to understand the differences between barks and woods and other lignocellulosic materials in addition to selecting a proper thermochemical method for bark-based char production. In this state-of-the-art review, after analyzing the main char production methods, barks were characterized for their chemical composition and compared with other important lignocellulosic materials. Following these steps, previous bark-based char production studies were analyzed, and different barks and process types were evaluated for the first time to guide future char production process designs based on bark feedstock. The dry and wet pyrolysis and gasification results of barks revealed that application of different particle sizes, heating rates, and solid residence times resulted in highly variable char yields between the temperature range of 220 °C and 600 °C. Bark-based char production should be primarily performed via a slow pyrolysis route, considering the superior surface properties of slow pyrolysis chars.


RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 22365-22375
Author(s):  
Guangbing Liang ◽  
Yanhong Li ◽  
Chun Yang ◽  
Xun Hu ◽  
Qingyin Li ◽  
...  

In this work, industrial biomass power plant ash was used to synthesize the ZSM-5 zeolites for the first time with the original intention to turn value-added material into wealth, and then committed to adsorption performance testing.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chaofeng Li ◽  
Xiaofeng Lin ◽  
Xing Ling ◽  
Shuo Li ◽  
Hao Fang

Abstract Background The biomanufacturing of d-glucaric acid has attracted increasing interest because it is one of the top value-added chemicals produced from biomass. Saccharomyces cerevisiae is regarded as an excellent host for d-glucaric acid production. Results The opi1 gene was knocked out because of its negative regulation on myo-inositol synthesis, which is the limiting step of d-glucaric acid production by S. cerevisiae. We then constructed the biosynthesis pathway of d-glucaric acid in S. cerevisiae INVSc1 opi1Δ and obtained two engineered strains, LGA-1 and LGA-C, producing record-breaking titers of d-glucaric acid: 9.53 ± 0.46 g/L and 11.21 ± 0.63 g/L d-glucaric acid from 30 g/L glucose and 10.8 g/L myo-inositol in fed-batch fermentation mode, respectively. However, LGA-1 was preferable because of its genetic stability and its superior performance in practical applications. There have been no reports on d-glucaric acid production from lignocellulose. Therefore, the biorefinery processes, including separated hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF) and consolidated bioprocessing (CBP) were investigated and compared. CBP using an artificial microbial consortium composed of Trichoderma reesei (T. reesei) Rut-C30 and S. cerevisiae LGA-1 was found to have relatively high d-glucaric acid titers and yields after 7 d of fermentation, 0.54 ± 0.12 g/L d-glucaric acid from 15 g/L Avicel and 0.45 ± 0.06 g/L d-glucaric acid from 15 g/L steam-exploded corn stover (SECS), respectively. In an attempt to design the microbial consortium for more efficient CBP, the team consisting of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be the best, with excellent work distribution and collaboration. Conclusions Two engineered S. cerevisiae strains, LGA-1 and LGA-C, with high titers of d-glucaric acid were obtained. This indicated that S. cerevisiae INVSc1 is an excellent host for d-glucaric acid production. Lignocellulose is a preferable substrate over myo-inositol. SHF, SSF, and CBP were studied, and CBP using an artificial microbial consortium of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be promising because of its relatively high titer and yield. T. reesei Rut-C30 and S. cerevisiae LGA-1were proven to be the best teammates for CBP. Further work should be done to improve the efficiency of this microbial consortium for d-glucaric acid production from lignocellulose.


2017 ◽  
Vol 46 (2) ◽  
pp. 315-337 ◽  
Author(s):  
Maik Kecinski ◽  
Kent D. Messer ◽  
Lauren Knapp ◽  
Yosef Shirazi

Oyster aquaculture has experienced tremendous growth in the United States over the past decade, but little is known about consumer preferences for oysters. This study analyzed preferences for oysters with varied combinations of brands, production locations, and production methods (aquaculture vs. wild-caught) using dichotomous choice, revealed preference economic field experiments. Results suggest significant and distinct differences in behavior between first-time and regular oyster consumers. While infrequent oyster consumers were drawn to oysters labeled as wild-caught, experienced oyster consumers preferred oysters raised via aquaculture. These findings will be valuable for growers and policymakers who invest in aquaculture to improve surrounding ecosystems.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 2) ◽  
pp. LBA-5-LBA-5
Author(s):  
Lynn Malec ◽  
An Van Damme ◽  
Anthony Chan ◽  
Mariya Spasova ◽  
Nisha Jain ◽  
...  

Abstract Introduction: Inhibitor development is a major complication of factor VIII (FVIII) replacement therapy, affecting approximately 30% of people with severe hemophilia A (Peyvandi et al Lancet 2016). Inhibitor eradication is the standard of care to restore responsiveness to FVIII; however, ITI regimens often require frequent high-dose factor injections over a long period (DiMichele et al Haemophilia 2007; Carcao et al Haemophilia 2021). Median (interquartile range [IQR]) time (months) to negative titer in the International ITI Study with high-dose FVIII was 4.6 (2.8-13.8) (n=31); negative titer to normal recovery was 6.9 (3.5-12.0) (n=23); and normal recovery to tolerance was 10.6 (6.3-20.5) (n=22) (Hay and DiMichele Blood 2012). Recombinant factor VIII Fc fusion protein (rFVIIIFc) is an extended half-life (EHL) FVIII that showed potential benefits for ITI in retrospective clinical data and case reports (Malec et al Haemophilia 2016; Groomes et al Pediatr Blood Cancer 2016; Carcao et al Haemophilia 2021). VerITI-8 (NCT03093480) is the first prospective study of rFVIIIFc in first-time ITI and follows on from the reITIrate (NCT03103542) study of rFVIIIFc for rescue ITI (Königs et al Res Pract Thromb Haemost, ISTH 2021). Aim: Describe outcomes in the verITI-8 study of first-time ITI with rFVIIIFc over 48 weeks in subjects with severe hemophilia A and high-titer inhibitors. Methods: VerITI-8 is a prospective, single-arm, open-label, multicenter study exploring efficacy of rFVIIIFc for first-time ITI in people with severe hemophilia A with high-titer inhibitors. Initial screening was followed by an ITI period in which all subjects received rFVIIIFc 200 IU/kg/day until tolerization or 48 weeks had elapsed (Figure). This was followed by tapered dose reduction to standard prophylaxis and follow-up. Key inclusion criteria included males with severe hemophilia A, high-titer inhibitors (historical peak ≥5 Bethesda units [BU]/mL), and prior treatment with any plasma-derived or recombinant standard half-life or EHL FVIII. Key exclusion criteria included coagulation disorder(s) other than hemophilia A and previous ITI. The primary endpoint was time to tolerization (successful ITI) with rFVIIIFc defined by inhibitor titer &lt;0.6 BU/mL, incremental recovery (IR) ≥66% of expected IR (IR ≥1.32 IU/dL per IU/kg) (both at 2 consecutive visits), and t ½ ≥7 hours (h) within 48 weeks. Secondary endpoints included number of subjects achieving ITI success, annualized bleed rates (ABR), and adverse events (AEs). Results: Sixteen subjects were enrolled and received ≥1 rFVIIIFc dose. Median (range) age at baseline was 2.1 (0.8-16.0) years, and historical peak inhibitor titer was 22.4 (6.2-256.0) BU/mL (Table). Twelve (75%), 11 (69%), and 10 (63%) subjects, respectively, achieved a negative inhibitor titer, an IR &gt;66%, and a t½ ≥7 h (ie, tolerance) within 48 weeks. Median (IQR) times in weeks to achieve these markers of success were 7.4 (2.2-17.8), 6.8 (5.4-22.4), and 11.7 (9.8-26.2) (ie, 2.7 [2.3-6.0] months to tolerance), respectively. One subject achieved partial success (negative inhibitor titer and IR ≥66%), and 5 subjects failed ITI, of which 2 had high inhibitors throughout, 2 experienced an increase in inhibitor levels, and 1 recorded a negative inhibitor titer at 282 days. Most bleeds occurred in the ITI period when median (IQR) ABRs (n=13) were 3.8 (0-10.1) overall, 0 (0-2.6) for spontaneous, 1 (0-4) for traumatic, and 0 (0-3.1) for joint. During tapering, median (IQR) ABRs (n=10) were overall, 0 (0-2.4); spontaneous, 0 (0-0); traumatic, 0 (0-1.3); and joint, 0 (0-0). All 16 subjects experienced ≥1 treatment-emergent AE (TEAE), the most frequent of which was pyrexia in 7 subjects (44%). One subject reported ≥1 related TEAE (injection site pain). Nine subjects (56%) experienced ≥1 treatment-emergent serious AE (TESAE). TESAEs occurring in ≥2 subjects included vascular device infection, contusion, and hemarthrosis. No treatment-related TESAEs, discontinuations due to AEs, or deaths were reported. Conclusions: rFVIIIFc is the first EHL FVIII with prospective data for first-time ITI in patients with severe hemophilia A with historical high-titer inhibitors. Evaluated within a 48-week timeframe, rFVIIIFc offered rapid time to tolerization (median 11.7 weeks; 2.7 months) with durable responses in almost two-thirds of subjects and was well tolerated. Optimizing ITI to eradicate inhibitors remains a priority. Figure 1 Figure 1. Disclosures Malec: CSL Behring: Consultancy; Genentech: Consultancy; HEMA Biologics: Consultancy; Pfizer: Consultancy; Sanofi: Consultancy, Research Funding; Takeda: Consultancy; Bioverativ: Consultancy, Research Funding, Speakers Bureau; Shire: Consultancy; Bayer: Consultancy. Van Damme: Pfizer: Consultancy; Shire: Consultancy; Bayer: Consultancy. Chan: Bioverativ: Consultancy. Jain: Sanofi: Ended employment in the past 24 months; Takeda: Current Employment, Current holder of stock options in a privately-held company. Sensinger: Sanofi: Current Employment, Current holder of stock options in a privately-held company. Dumont: Sanofi: Current Employment, Current holder of stock options in a privately-held company. Lethagen: Sobi: Current Employment, Current holder of stock options in a privately-held company. Carcao: Bayer, Bioverativ/Sanofi, CSL Behring, Novo Nordisk, Octapharma, Pfizer, Roche, and Shire/Takeda: Research Funding; Bayer, Bioverativ/Sanofi, CSL Behring, Grifols, LFB, Novo Nordisk, Pfizer, Roche, and Shire/Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees. Peyvandi: Roche: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Sobi: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Ablynx, Grifols, Kedrion, Novo Nordisk, Roche, Shire, and Sobi: Other: Personal Fees. OffLabel Disclosure: adheres to routine clinical practice


ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


Sign in / Sign up

Export Citation Format

Share Document