Development and Validation of a Cost-Effective HPLC-FLD Method for Routine Analysis of Fumonisins B1 and B2 in Corn and Corn Products

2016 ◽  
Vol 10 (5) ◽  
pp. 1349-1358 ◽  
Author(s):  
Florian Kaltner ◽  
Corina Rampl ◽  
Michael Rychlik ◽  
Thomas Zimmermann ◽  
Alexander Rohe
2013 ◽  
Vol 6 (1) ◽  
pp. 133-141 ◽  
Author(s):  
S. Binte Amir ◽  
M. A. Hossain ◽  
M. A. Mazid

The present study was undertaken to develop and validate a simple, sensitive, accurate, precise and reproducible UV spectrophotometric method for cefuroxime axetil using methanol as solvent. In this method the simple UV spectrum of cefuroxime axetil in methanol was obtained which exhibits absorption maxima (?max) at 278 nm. The quantitative determination of the drug was carried out at 278 nm and Beer’s law was obeyed in the range of (0.80-3.60) µg/ml. The proposed method was applied to pharmaceutical formulation and percent amount of drug estimated (95.6% and 96%) was found in good agreement with the label claim. The developed method was successfully validated with respect to linearity, specificity, accuracy and precision. The method was shown linear in the mentioned concentrations having line equation y = 0.05x + 0.048 with correlation coefficient of 0.995. The recovery values for cefuroxime axetil ranged from 99.85-100.05. The relative standard deviation of six replicates of assay was less than 2%. The percent relative standard deviations of inter-day precision ranged between 1.45-1.92% and intra-day precision of cefuroxime axetil was 0.96-1.51%. Hence, proposed method was precise, accurate and cost effective.  Keywords: UV-Vis spectrophotometer; Method validation; Cefuroxime axetil; Recovery studies.  © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.   doi: http://dx.doi.org/10.3329/jsr.v6i1.14879 J. Sci. Res. 6 (1), 133-141 (2013)  


2021 ◽  
Vol 37 (2) ◽  
pp. 68-75
Author(s):  
Drew David Reinbold-Wasson ◽  
Michael Hay Reiskind

ABSTRACT An essential component of vector-borne disease monitoring programs is mosquito surveillance. Surveillance efforts employ various collection traps depending on mosquito species and targeted life-history stage, i.e., eggs, larvae, host-seeking, resting, or gravid adults. Surveillance activities often use commercial traps, sometimes modified to accept specific mosquito species attractants. The advent of widely available and affordable 3D printing technology allows the construction of novel trap designs and components. The study goal was to develop and assess a cost-effective, multipurpose, 6-volt mosquito trap integrating features of both host-seeking and gravid mosquito traps to collect undamaged live specimens: a multifunctional mosquito trap (MMT). We tested the MMT in comparison to commercial traps, targeting gravid Aedes albopictus, host-seeking Ae. albopictus, and total number of host-seeking mosquitos regardless of species. Field evaluations found the MMT performed as well as or better than comparable commercial traps. This project demonstrates an easy to construct, inexpensive, and versatile mosquito trap, potentially useful for surveying multiple mosquito species and other hematophagous insects by varying attractants into the MMT.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 206
Author(s):  
Chiara E. Ghezzi ◽  
Devon R. Hartigan ◽  
Justin P. Hardick ◽  
Rebecca Gore ◽  
Miryam Adelfio ◽  
...  

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.


2019 ◽  
Vol 57 (8) ◽  
pp. 715-723
Author(s):  
Elizabeth Mary Mathew ◽  
Leslie Lewis ◽  
Pragna Rao ◽  
K Nalini ◽  
Asha Kamath ◽  
...  

AbstractMethyl malonic acid and branched-chain keto acids are important biomarkers for the diagnosis of cobalamin deficiencies and maple syrup urine disease. We report the development and validation of a HILIC-ESI-MS2 method for the quantification of these organic acids from neonatal urine. The samples were 100 times diluted and analyzed on a ZIC-HILIC column with 25-mM formic acid in water: 25-mM formic acid in acetonitrile (45:55) at a flow rate of 0.8 mL/min with a runtime of only 6 minutes. The method demonstrated a lower limit of detection of 10 ng/mL, Limit of Quantification (LOQ) of 50 ng/mL, linearity of r2 ≥ 0.990 and recoveries of 87–105% for all analytes. The intraday and interday precision CV’s were <10% and 12%, respectively. Extensive stability studies demonstrated the analytes to be stable in stock and in matrix with a percent change within ±15%. The Bland–Altman analysis of the developed method with the gold standard GCMS method demonstrated a bias of 0.44, 0.11, 0.009 and –0.19 for methyl malonic acid, 3-methyl-2-oxovaleric acid, 2-hydroxy-3methylbutyric acid and 4-methyl-2-oxovaleric acid, respectively, proving the methods are comparable. The newly developed method involves no derivatization and has a simple sample preparation and a low runtime, enabling it to be easily automated with a high sample throughput in a cost-effective manner.


2018 ◽  
Vol 68 (2) ◽  
pp. 171-183
Author(s):  
Béla Kovács ◽  
Lajos Kristóf Kántor ◽  
Mircea Dumitru Croitoru ◽  
Éva Katalin Kelemen ◽  
Mona Obreja ◽  
...  

Abstract A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.


2018 ◽  
Vol 5 (5) ◽  
pp. 172146 ◽  
Author(s):  
Luca Redivo ◽  
Miroslav Stredanský ◽  
Elisabetta De Angelis ◽  
Luciano Navarini ◽  
Marina Resmini ◽  
...  

Food quality control is a mandatory task in the food industry and relies on the availability of simple, cost-effective and stable sensing platforms. In the present work, the applicability of bare glassy carbon electrodes for routine analysis of food samples was evaluated as a valid alternative to chromatographic techniques, using caffeine as test analyte. A number of experimental parameters were optimized and a differential pulse voltammetry was applied for quantification experiments. The detection limit was found to be 2 × 10 −5  M (3σ criterion) and repeatability was evaluated by the relative standard deviation of 4.5%. The influence of sugars, and compounds structurally related to caffeine on the current response of caffeine was evaluated and found to have no significant influence on the electrode performance. The suitability of bare carbon electrodes for routine analysis was successfully demonstrated by quantifying caffeine content in seven commercially available drinks and the results were validated using a standard ultra-high performance liquid chromatography method. This work demonstrates that bare glassy carbon electrodes are a simple, reliable and cost-effective platform for rapid analysis of targets such as caffeine in commercial products and they represent therefore a competitive alternative to the existing analytical methodologies for routine food analysis.


2019 ◽  
Vol 229 (4) ◽  
pp. S238
Author(s):  
Nicole J. Krumrei ◽  
Russell J. Pepe ◽  
Barbara Perry ◽  
Sugeet Jagpal ◽  
Sabiha Hussain ◽  
...  

Nanophotonics ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Gerardo A. Lopez ◽  
M.-Carmen Estevez ◽  
Maria Soler ◽  
Laura M. Lechuga

AbstractMotivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.


Sign in / Sign up

Export Citation Format

Share Document