scholarly journals EDTA interfacial chelation Ca2+ incorporates superhydrophobic coating for scaling inhibition of CaCO3 in petroleum industry

2021 ◽  
Author(s):  
Ming-Liang Zhu ◽  
Hui-Juan Qian ◽  
Rui-Xia Yuan ◽  
Dong-Yan Zhao ◽  
Hai-Chao Huang ◽  
...  

AbstractIn this paper, the superhydrophobic poly(vinylidene fluoride)/fluorinated ethylene propylene/SiO2/CNTs-EDTA (PFSC-EDTA) composite coating was successfully fabricated and applied for anti-scaling performance. The deposition of CaCO3 on the surface of the superhydrophobic PFSC-EDTA composite coating reached 0.0444 mg/cm2 for 192-h immersion into the supersaturated CaCO3 solution, which was only 11.4% that of the superhydrophobic PFSC composite coating. At the interface between the CaCO3 solution and the PFSC-EDTA coating, the Ca2+ could be firstly chelated by EDTA that was benefit for improving the anti-scaling performance of the superhydrophobic PFSC-EDTA composite coating. In another hand, the addition of EDTA to the CNTs played an important role in fabricating the SiO2-centric and CNTs-EDTA-surrounded multilevel micro–nanostructure in the superhydrophobic PFSC-EDTA composite coating, in favor of maintaining the air film under the water and the stability of the superhydrophobic surface. The research supplies a new way of improving anti-scaling performance of superhydrophobic coating by incorporating the organic chelating agent at the interface and changing the traditional way of scale prevention.

2018 ◽  
Vol 20 (23) ◽  
pp. 15718-15724 ◽  
Author(s):  
Chunyue Hou ◽  
Huihui Li ◽  
Xiaoli Sun ◽  
Shouke Yan ◽  
Yanfang Wang ◽  
...  

Two kinds of typical phase separated morphologies are prepared and they alter the stability of crystals.


2006 ◽  
Vol 514-516 ◽  
pp. 951-955 ◽  
Author(s):  
Carlos M. Costa ◽  
Vitor Sencadas ◽  
João F. Mano ◽  
Senentxu Lanceros-Méndez

In this work, mechanical and thermal experimental techniques have been applied in order to relate the mechanical response with the microscopic variations of the material. Stress-strain results along the main directions of β-poly(vinylidene fluoride), β-PVDF, in poled and non-poled samples enables to investigate the influence of the poling process on the mechanical response of the material. Further, differential scanning calorimetry experiments allow the investigation of the effect of poling in the degree of crystallinity of the material as well as on the stability of the crystalline phase. Thermogravimetric analysis was used to investigate the kinetics of the thermal degradation of poled and non-poled β-PVDF samples. The differences observed between the two materials suggest that the poling affects the mechanical properties of the material especially in the direction parallel to the polymeric chains and originates changes at a molecular level that remain beyond the melting of the material.


2019 ◽  
Vol 11 (29) ◽  
pp. 26384-26391 ◽  
Author(s):  
Yipeng Huang ◽  
Feiming Li ◽  
Linghang Qiu ◽  
Fangyuan Lin ◽  
Zhiwei Lai ◽  
...  

2020 ◽  
Vol 142 ◽  
pp. 105566 ◽  
Author(s):  
Huijuan Qian ◽  
Mingliang Zhu ◽  
Hua Song ◽  
Huaiyuan Wang ◽  
Zhanjian Liu ◽  
...  

2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


Sign in / Sign up

Export Citation Format

Share Document