scholarly journals Recombinant heat shock protein 27 (HSP27/HSPB1) protects against cadmium-induced oxidative stress and toxicity in human cervical cancer cells

2017 ◽  
Vol 22 (3) ◽  
pp. 357-369 ◽  
Author(s):  
Daiana G. Alvarez-Olmedo ◽  
Veronica S. Biaggio ◽  
Geremy A. Koumbadinga ◽  
Nidia N. Gómez ◽  
Chunhua Shi ◽  
...  
2018 ◽  
Vol 18 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Madhumitha Kedhari Sundaram ◽  
Mohammad Zeeshan Ansari ◽  
Abdullah Al Mutery ◽  
Maryam Ashraf ◽  
Reem Nasab ◽  
...  

Introduction: Epidemiological studies indicate that diet rich in fruits and vegetables is associated with decreased cancer risk thereby indicating that dietary polyphenols can be potential chemo-preventive agents. The reversible nature of epigenetic modifications makes them a favorable target for cancer prevention. Polyphenols have been shown to reverse aberrant epigenetic patterns by targeting the regulatory enzymes, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). In vitro and in silico studies of DNMTs and HDACs were planned to examine genistein’s role as a natural epigenetic modifier in human cervical cancer cells, HeLa. Methods: Expression of the tumour suppressor genes (TSGs) [MGMT, RARβ, p21, E-cadherin, DAPK1] as well the methylation status of their promoters were examined alongwith the activity levels of DNMT and HDAC enzymes after treatment with genistein. Expression of DNMTs and HDACs was also studied. In-silico studies were performed to determine the interaction of genistein with DNMTs and HDACs. Results: Genistein treatment significantly reduced the expression and enzymatic activity of both DNMTs and HDACs in a time-dependent way. Molecular modeling data suggest that genistein can interact with various members of DNMT and HDAC families and support genistein mediated inhibition of their activity. Timedependent exposure of genistein reversed the promoter region methylation of the TSGs and re-established their expression. Conclusions: In this study, we find that genistein is able to reinstate the expression of the TSGs studied by inhibiting the action of DNMTs and HDACs. This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.


2010 ◽  
Vol 49 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Wei-Chun Chang ◽  
Ching-Hung Hsieh ◽  
Meen-Woon Hsiao ◽  
Wu-Chou Lin ◽  
Yao-Ching Hung ◽  
...  

2019 ◽  
Vol 73 ◽  
pp. 563-571
Author(s):  
Joanna Jakubowicz-Gil ◽  
Roman Paduch ◽  
Krystyna Skalicka-Woźniak ◽  
Joanna Sumorek-Wiadro ◽  
Adrian Zając ◽  
...  

Aim: The aim of the present study was to investigate the efficacy of osthole (7-metoxy-8-isopenthenocoumarin) alone and combined with tamoxifen (TAM) in the elimination of human cervical cancer cells via programmed death. The involvement of heat shock proteins, i.e. well-known molecular chaperones, will be investigated. Material/Methods: Three human cervical cancer cell lines, infected with human papilloma virus (HPV), i.e. HeLa (HPV 18), SiHa (HPV 16), and CaSki (HPV 16 and 18), were used in the experiments. After osthole and TAM treatment, cells stained with fluorochromes were analyzed microscopically according to apoptotic, autophagic, and necrotic morphology. Hsp27, Hsp72, and Hsp90 levels were analyzed by immunoblotting. Transfection with specific siRNA was used for blocking of Hsp expression. Results: In the HeLa, CaSki, and SiHa cell lines, osthole and TAM applied alone had no significant effect on cell death induction. This was correlated with an overexpression of heat shock proteins 27, 72, and 90. In the case of a combination of both drugs, the level of apoptosis was elevated only in SiHa cells. Preincubation with osthole followed by TAM addition as well as simultaneous incubation with both drugs was the most effective. This was correlated with the inhibition of Hsp27, Hsp72, and Hsp90 expression. Blocking of Hsp expression with specific siRNA increased the sensitivity of the studied cell lines to the induction of apoptosis, but not to autophagy or necrosis. Conclusions: Our results indicated that the elimination of heat shock proteins from cervical cancer cells sensitized them to initiation of apoptosis after osthole and tamoxifen treatment.


Sign in / Sign up

Export Citation Format

Share Document