Improvements of elevated temperature strength and creep resistance of Mg-12Zn-4Al based alloy with calcium addition

2012 ◽  
Vol 17 (3) ◽  
pp. 273-276
Author(s):  
Xiao-feng Wan ◽  
Hong-jun Ni ◽  
Ming-yu Huang ◽  
Yu Zhu ◽  
Xing-xing Wang
2020 ◽  
Vol 321 ◽  
pp. 04006
Author(s):  
John Mantione ◽  
Matias Garcia-Avila ◽  
Matthew Arnold ◽  
David Bryan ◽  
John Foltz

The attractive combination of strength and low density has resulted in titanium alloys covering 15 to 25% of the weight of a modern jet engine, with titanium currently being used in fan, compressor and nozzle components. Typically, titanium alloys used in jet engine applications are selected from the group of near alpha and alpha-beta titanium alloys, which exhibit superior elevated temperature strength, creep resistance and fatigue life compared to typical titanium alloys such as Ti-6Al-4V. Legacy titanium alloys for elevated temperature jet engine applications include Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-4Al-4Mo-2Sn-0.5Si. Improving the mechanical behavior of these alloys enables improved component performance, which is crucial to advancing jet engine performance. As a world leader in supplying advanced alloys of titanium, nickel, cobalt, and specialty stainless steels, ATI is developing new titanium alloys with improved elevated temperature properties. These improved properties derive from precipitation of secondary intermetallics in alpha-beta titanium alloys. ATI has developed several new alpha-beta titanium alloy compositions which exhibit significantly improved elevated temperature strength and creep resistance. This paper will focus on the effects of chemistry and heat treat conditions on the microstructure and resulting elevated temperature properties of these new aerospace titanium alloys.


Author(s):  
G. S. Wang ◽  
K. Liu ◽  
S. L. Wang

Present work has systematically investigated the evolution of dispersoid and elevated-temperature properties including the strength and creep resistance during the various multi-step heat treatments in Al-Mn-Mg 3004 alloys. Results show that only α-Al(MnFe)Si dispersoid is observed in the studied temperature range (up to 625°C) and it coarsens with increasing temperature to 500°C but dissolves at 625°C. The evolution of elevated-temperature strength and creep resistance is greatly related to the temperature of each step during the multi-step heat treatments. Generally, lower temperature at the first-step heat treatment leads to higher properties while the properties decrease with increasing temperature of last-step heat treatment. Suitable models have been introduced to explain the evolution of strength and the creep threshold stress at elevated-temperature during the various heat treatments.


Alloy Digest ◽  
2009 ◽  
Vol 58 (1) ◽  

Abstract DMV 310 N is a special modification of 310, an austenitic stainless steel, by additions of both nitrogen and niobium. This addition results in increased elevated-temperature strength and creep resistance. The alloy has potential in advanced boilers with high steam temperatures. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1027. Producer or source: Mannesmann DMV Stainless USA Inc.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5489
Author(s):  
Jovid Rakhmonov ◽  
Kun Liu ◽  
Paul Rometsch ◽  
Nick Parson ◽  
X.-Grant Chen

In the present work, we investigated the possibility of introducing fine and densely distributed α-Al(MnFe)Si dispersoids into the microstructure of extruded Al-Mg-Si-Mn AA6082 alloys containing 0.5 and 1 wt % Mn through tailoring the processing route as well as their effects on room- and elevated-temperature strength and creep resistance. The results show that the fine dispersoids formed during low-temperature homogenization experienced less coarsening when subsequently extruded at 350 °C than when subjected to a more typical high-temperature extrusion at 500 °C. After aging, a significant strengthening effect was produced by β″ precipitates in all conditions studied. Fine dispersoids offered complimentary strengthening, further enhancing the room-temperature compressive yield strength by up to 72–77 MPa (≈28%) relative to the alloy with coarse dispersoids. During thermal exposure at 300 °C for 100 h, β″ precipitates transformed into undesirable β-Mg2Si, while thermally stable dispersoids provided the predominant elevated-temperature strengthening effect. Compared to the base case with coarse dispersoids, fine and densely distributed dispersoids with the new processing route more than doubled the yield strength at 300 °C. In addition, finer dispersoids obtained by extrusion at 350 °C improved the yield strength at 300 °C by 17% compared to that at 500 °C. The creep resistance at 300 °C was greatly improved by an order of magnitude from the coarse dispersoid condition to one containing fine and densely distributed dispersoids, highlighting the high efficacy of the new processing route in enhancing the elevated-temperature properties of extruded Al-Mg-Si-Mn alloys.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Surendra Kumar Makineni ◽  
Sandeep Sugathan ◽  
Subhashish Meher ◽  
Rajarshi Banerjee ◽  
Saswata Bhattacharya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document