Exploration on armored equipment materiel support grid design

2017 ◽  
Vol 22 (5) ◽  
pp. 602-608
Author(s):  
Xueqiang Yang ◽  
Wenjun Li ◽  
Jun Huang ◽  
Jing Huang
Keyword(s):  
2005 ◽  
Vol 127 (6) ◽  
pp. 598-605 ◽  
Author(s):  
Mary V. Holloway ◽  
Timothy A. Conover ◽  
Heather L. McClusky ◽  
Donald E. Beasley ◽  
Michael E. Conner

Support grids are an integral part of nuclear reactor fuel bundle design. Features, such as split-vane pairs, are located on the downstream edge of support grids to enhance heat transfer and delay departure from nucleate boiling in the fuel bundle. The complex flow fields created by these features cause spatially varying heat transfer conditions on the surfaces of the rods. Azimuthal variations in heat transfer for three specific support grid designs, a standard grid, split-vane pair grid, and disc grid, are measured in the present study using a heated, thin film sensor. Normalized values of the azimuthal variations in Nusselt number are presented for the support grid designs at axial locations ranging from 2.2 to 36.7 Dh. Two Reynolds numbers, Re=28,000 and Re=42,000 are tested. The peak-to-peak azimuthal variation in normalized Nusselt number is largest just downstream of the support grids and decreases to a minimum value by the end of the grid span. A comparison of the azimuthal heat transfer characteristics between the support grids indicates distinctive results for each type of support grid design tested. The split-vane pair grid exhibits the largest peak-to-peak variation in azimuthal heat transfer of +30% to −15% just downstream of the grid at 2.2 Dh. The disc grid has the most uniform azimuthal heat transfer distribution with a peak-to-peak value of ±4% for all axial locations tested.


Author(s):  
Mary V. Holloway ◽  
Timothy A. Conover ◽  
Heather L. McCluskey ◽  
Donald E. Beasley ◽  
Michael E. Conner

1997 ◽  
Vol 480 ◽  
Author(s):  
Helen L. Humiston

AbstractThe complex materials systems in VLSI devices require specialized preparation techniques for TEM microstructural analysis. For this purpose, it is desirable to obtain electron transparency in all material layers from the oxides used in dielectrics to refractory metals such as tungsten. The primary advantage of dimpling these materials is that ideal specimens are obtained for low angle ion milling. By dimpling both sides of the cross section with a padded flatting tool, a thicker specimen of 130μm at the outer rim of the 3mm disc is produced that narrows to the 125nm thickness fringes in the center. These samples do not require a copper support grid, thereby allowing for a lower milling angle of 2.5 degrees on both sides of the specimen. This technique provides a cross section that is electron transparent in all layers without the loss of oxides due to differential thinning rates of various materials at higher milling angles.It is generally thought that precision thinning through a submicron feature is not possible on the dimpler. However, a simple step-by-step procedure for this technique will be demonstrated and discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Qinghai Zhao ◽  
Xiaokai Chen ◽  
Zheng-Dong Ma ◽  
Yi Lin

A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO) problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA) and the sequential optimization and reliability assessment (SORA). To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM) is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document