Influence of Thermal Modification on Al-Si Coating of Hot-Stamped 22MnB5 Steel: Microstructure, Phase Transformation, and Mechanical Properties

Author(s):  
Qiongyan Wang ◽  
Wenhu Lin ◽  
Fang Li ◽  
Chen Shen ◽  
Xueming Hua
2014 ◽  
Vol 622-623 ◽  
pp. 919-928 ◽  
Author(s):  
Ronan Jacolot ◽  
Didier Huin ◽  
Artem Marmulev ◽  
Eliette Mathey

The importance of coil cooling conditions on mechanical properties uniformity of HSLA and AHSS steel grades is discussed. It is namely shown that hot rolled coil under conventional industrial production can be cooled non-uniformly. That is why to predict correctly the final steel microstructure and mechanical properties of hot-rolled products an accurate description of not only run-out table condition but also of coil cooling should be done. Two solutions to provide accurate description of coil cooling were tested. First one is to use 2D finite element (FE) thermal model. When coupled with the ArcelorMittal metallurgical model to predict hot-rolled microstructure and properties (TACSI) it matches well the industrial data within +/-15-20MPa both for the tensile and yield strength. However, this approach is recognized to be heavy and time consuming. A second solution, a new 2D coil cooling simplified model incorporated in TACSI model, proved to be quite efficient, as it leads to performances similar to the more detailed first solution. Moreover, it is able to compute the coupling between the thermal evolution of the hot band and the kinetics of phase transformation during coil coiling and cooling, and will enable a better evaluation of the final mechanical properties especially for the grades for which the phase transformation is not completed before hot band coiling.


Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Stefanie Stanzl-Tschegg ◽  
Wilfried Beikircher ◽  
Dieter Loidl

Abstract Thermal modification is a well established method to improve the dimensional stability and the durability for outdoor use of wood. Unfortunately, these improvements are usually accompanied with a deterioration of mechanical performance (e.g., reduced strength or higher brittleness). In contrast, our investigations of the hardness properties in the longitudinal direction of beech wood revealed a significant improvement with thermal modification. Furthermore, we applied instrumented indentation tests on different hierarchical levels of wood structure (growth ring and cell wall level) to gain closer insights on the mechanisms of thermal treatment of wood on mechanical properties. This approach provides a variety of mechanical data (e.g., elastic parameters, hardness parameters, and viscoelastic properties) from one single experiment. Investigations on the influence of thermal treatment on the mechanical properties of beech revealed similar trends on the growth ring as well as the on the cell wall level of the wood structure.


2018 ◽  
Vol 444 ◽  
pp. 377-386 ◽  
Author(s):  
Mohammad Abedi ◽  
Amir Abdollah-zadeh ◽  
Massimiliano Bestetti ◽  
Antonello Vicenzo ◽  
Andrea Serafini ◽  
...  

2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


Sign in / Sign up

Export Citation Format

Share Document