Contribution of Shear Reinforcements and Concrete to the Shear Capacity of Interfaces between Concretes Cast at Different Times

Author(s):  
Jie Liu ◽  
Yangmin Bu ◽  
Juanjuan Chen ◽  
Qing Wang
2008 ◽  
Vol 385-387 ◽  
pp. 857-860
Author(s):  
Hyun Ki Choi ◽  
J.S. Kim ◽  
E.S. Jin ◽  
Chang Sik Choi

This research is an experimental study on full-scale interior slab-column connections of flat-plate. Three types of shear reinforcements were proposed to prevent brittle punching shear failure that could result in collapse of whole flat plate structures. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with the reinforcements was tested. The dimension of the slabs was 2620*2725*180mm and the specimens had a 600*800mm square column at the center of the slabs. The slabs were tested up to failure using monotonic vertical shear forces. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slab-column connections.


2019 ◽  
Vol 11 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Ahmed K. El-Sayed

Corrosion of steel reinforcement represents one of the main causes of deterioration and degradation of reinforced concrete (RC) structures. Shear reinforcements (stirrups) as an outer reinforcement in RC beams are more susceptible to corrosion problems and damage. This paper describes an analytical procedure for predicting the shear capacity of stirrup-corroded RC beams strengthened in shear using FRP laminates. The procedure shows how to incorporate the effects of the damages due to corrosion of stirrups into the design equations. An experimental investigation has been conducted to provide experimental data on the shear capacity of RC beams with corrosion-damaged stirrups strengthened using carbon fiber reinforced polymer (CFRP) sheets. The experimental study comprised three beams of 200 mm wide, 350 mm deep, and 2800 mm long. The steel stirrups in the beams were corroded using an accelerated corrosion technique. After CFRP strengthening, the beams were tested in four-point bending under a simply supported span of 2400 mm. The shear capacity of the strengthened beams was predicted using the proposed procedure and compared with the experimental ones. Good correlations were found between the predicted and experimental shear strength of the beams.


2021 ◽  
Author(s):  
Roya Shoghi Haghdoost

A theoretical study is conducted to investigate the shear behaviour of recycled aggregate concrete (RAC) beams with and without shear reinforcements along with the performance evaluation various Code based/other existing equations in predicting shear strength. In addition, three artificial neural network (ANN) models for shear strength prediction of RAC beams with and without shear reinforcements are developed and their performance validated by using 108 beams from available research studies. Most of the Codes and existing methods underestimate the shear capacity of RAC beams with/without shear reinforcement. However, over estimation of shear strength by Codes/existing methods for about 10% RAC beams needs to be addressed when using such Codes/existing methods for shear strength prediction. All three ANN models are found to predict shear strength of RAC beams. Developed ANN models are able to simulate the effect of shear reinforcement on the shear strength of RAC beams.


2022 ◽  
Vol 12 (1) ◽  
pp. 411
Author(s):  
Inkyu Rhee

The shear failure of a reinforced concrete member is a sudden diagonal tension failure; flexible failure is gradual, associated with significant cracks, and leads to extensive sagging. Therefore, reinforced shear rebars are commonly used to ensure that flexible failure occurs before shear failure under extreme conditions. Extensive efforts are underway to replace conventional shear reinforcements with steel fibers. Here, a nonlinear analysis of a steel fiber-reinforced concrete T-beam was performed in order to estimate the maximum shear capacity with the aid of experimental test data. A continuum-damaged plasticity model and modified compression field theory were used for nonlinear analysis. Three 360 × 360-mm web elements were selected between the shear span; changes in the principal axis caused by crack development and propagation were traced. Changes in the crack angle according to the average strain of the bottom longitudinal reinforcement and the vertical strain of the web element were also determined. For verification, a strut-tie model was used to predict shear capacity. The experimental results and the finite element analyses were in good agreement.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faten Y. Taqi ◽  
Mohammed A. Mashrei ◽  
Hayder M. Oleiwi

Abstract This paper offers a finite element method (FEM) to simulate the behavior of steel fiber reinforced concrete (SFRC) beams with corrosion of the longitudinal reinforcement using the ABAQUS package. This work was undertaken with the concrete damaged plasticity model (CDP). The expansion of corrosion product was utilized to represent the steel-concrete boundary to study the behavior of SFRC beams. Three beams with three volume fractions of steel fiber (0.8 %, 1.2 %, and 1.8 %) and three reinforced concrete (RC) beams with and without stirrups were created and tested under four-point loading to assess the shear capacity of beams. Corrosion of rebars at one of the RC beams that does not contain shear reinforcements will be studied. The crack patterns and load deflections of these beams were compared with experimental results found by the authors. The conclusions of this analysis will be valuable in considering the structural behavior of SFRC structures with uniform steel bar corrosion using FEM. Analytical results showed that the suggested model is qualified in better simulation and in accuracy of numerical and experimental results. The differences between analytical and experimental results were less than 8 % for load carrying capacity and 14 % for deflection; these differences are also satisfactory within the limits of the engineering conclusion.


2021 ◽  
Author(s):  
Roya Shoghi Haghdoost

A theoretical study is conducted to investigate the shear behaviour of recycled aggregate concrete (RAC) beams with and without shear reinforcements along with the performance evaluation various Code based/other existing equations in predicting shear strength. In addition, three artificial neural network (ANN) models for shear strength prediction of RAC beams with and without shear reinforcements are developed and their performance validated by using 108 beams from available research studies. Most of the Codes and existing methods underestimate the shear capacity of RAC beams with/without shear reinforcement. However, over estimation of shear strength by Codes/existing methods for about 10% RAC beams needs to be addressed when using such Codes/existing methods for shear strength prediction. All three ANN models are found to predict shear strength of RAC beams. Developed ANN models are able to simulate the effect of shear reinforcement on the shear strength of RAC beams.


2013 ◽  
Vol 99 (7) ◽  
pp. 1679-1686
Author(s):  
Yuguang Yang ◽  
Joop Den Uijl ◽  
Joost Walraven ◽  
Stavros Petrocheilos

2016 ◽  
Vol 106 (6) ◽  
pp. 708-715
Author(s):  
Chenwei HOU ◽  
Takuro NAKAMURA ◽  
Takayuki IWANAGA ◽  
Junichiro NIWA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document