Optimization of welding current waveform for dissimilar material with DP590 and Al5052 by Delta-spot welding process

2016 ◽  
Vol 30 (6) ◽  
pp. 2713-2721 ◽  
Author(s):  
Ji-Sun Kim ◽  
In-Ju Kim ◽  
Young-Gon Kim
2021 ◽  
Vol 11 (3) ◽  
pp. 181-185
Author(s):  
Amit Hazari ◽  
Rith Saha ◽  
Bidisha Ghosh ◽  
Debraj Sengupta ◽  
Sayan Sarkar ◽  
...  

The spot welding procedure is used in a variety of industrial applications. The most critical elements influencing welding quality, productivity, and cost are the spot welding parameters. This research examines the effect of welding factors such as welding current and welding time on the strength of various welding joint designs. Resistance spot welding (RSW) is used in the automotive industry for manufacturing. This research focused on the optimization of process parameters for resistance spot welding (RSW), as well as the tensile testing and spot weld diameter. The goals of this analysis are to comprehend the physics of the process and to demonstrate the effect of electrical current, weld time, and material type on the resistance spot welding process.


Author(s):  
Wei Li ◽  
Daniel Cerjanec

This paper presents a comparative study of the AC and MFDC resistance spot welding process. Two identical welders were used; one with a single phase AC and the other with a median frequency DC weld control. Both welders were instrumented such that the primary and secondary voltage and current could be collected. A nugget growth experiment was conducted to compare the weld size and energy consumption in the AC and MFDC welding processes. It is found that the MFDC process generally produces larger welds with the same welding current. However, this difference is more prominent when the welding current is low. Overall the AC welding process consumes more energy to make a same size weld. The larger the welding current is used, the less efficient the AC process becomes.


Author(s):  
M Hamedi ◽  
M Shariatpanahi ◽  
A Mansourzadeh

Deformation of the spot-welded sub-assemblies in assembly operations and the gap between the matching sub-assemblies have been quality concerns specifically in the automotive industry. Overall quality of the car body and its sub-assemblies, apart from quality of each stamped part, depends markedly on the welding process. This paper considers optimization of three important process parameters in the spot welding of the body components, namely welding current, welding time, and gun force. In this research, first the effects of these parameters on deformation of the sub-assemblies are experimentally investigated. Then neural networks and multi-objective genetic algorithms are utilized to select the optimum values of welding parameters that yield the least values of dimensional deviations in the sub-assemblies. Welding sub-assemblies with the optimized set of parameters brought all of them into the tolerance range. The proposed approach can be utilized in manufacturing sub-assemblies that can fit and match better with adjacent parts in the automotive body. It enhances quality of the joint and will result in improving overall quality of the body in white.


2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2012 ◽  
Vol 28 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Rinsei Ikeda ◽  
Yasuaki Okita ◽  
Moriaki Ono ◽  
Koichi Yasuda ◽  
Toshio Terasaki

Author(s):  
Ngo Huu Manh ◽  
Nguyen Van Anh ◽  
Murata Akihisa ◽  
Hideno Terasaki

A study about influence of heat input on welding defects in vertical upward welding position for dissimilar material and thickness using a new variation of TIG welding torch is done with support of advanced inspection methods SEM and EBSD. With vertical upward welding position, control heat input plays an important role to keep the weld stabilization without defects. On the other hand, TIG welding process using a conventional TIG torch (conventional TIG welding process) has low efficiency and it is difficult to control heat input with high accuracy. So, it is considered that using conventional TIG torch is still a challenge for welding thin plates. In this case, a new variation of TIG torch has been developed. This torch used a constricted nozzle to improve plasma arc characteristics. As a result, it can control efficiently the heat input to prevent the excessive or insufficiency for joining thin sheets. For evaluation of welding quality, advanced examination methods SEM and EBSD were applied to directly observe the welding defects. From the results, the formation mechanism of blowhole inside weld zone in case of welding dissimilar material and thickness was discussed. It is pointed out that when sufficient welding current, the change from weld zone to base metal is uniform, no welding defects such as blowhole was seen. However, in case of low welding current, the thinner base metal is insufficient fusion and the change between weld zone and base metal is not uniform. The blowhole was observed at SS400 material side.


2021 ◽  
Vol 12 (2) ◽  
pp. 421-432
Author(s):  
Jatmoko Awali ◽  
◽  
Fahmi Rudiyanto ◽  
Somalinggi Thesalonicha ◽  
Muthia Putri Darsini Lubis ◽  
...  

This study aims to determine the effect of variations of the current with combining two welding techniques SMAW and FCAW in double v-groove against the hardness and microstructure of the dissimilar material of JIS G3101-SS400 and ASTM A36. JIS G3101 SS400 and ASTM A36 each with a thickness of 10 mm were used as the materials. The combination of SMAW welding with E7018 electrodes and FCAW with E71T-1 were used as the welding techniques. The current used in SMAW welding were 60 A, 75 A, and 90 A. While in FCAW welding the current used were 190 A, 205 A, and 220 A. Hardness and microstructure tests were carried out on each sample. The results of the study showed that the current in welding process affect the hardness value and microstructure of material. The higher the welding current, the value of hardness of the material going to decrease and vice versa. The highest hardness values in SMAW and FCAW welding are at currents of 60 A and 190 A. Then the current in the welding process also affect the microstructure produced in the weld and HAZ. The formed microstructure containing pearlite and ferrite. The higher welding current, the percentage of pearlite produced increase and the percentage of ferrite decrease.


Author(s):  
M. Abu-Aesh ◽  
Moataza Hindy

Extensive work had been conducted on spot-welding due to its rapidly increasing industrial importance. The resistance spot-welding involves complicated phenomena, as several effects are found in the process, e.g., temperature, surface roughness, pressure, and eddy current effects. Most of the work exerted for analyzing the spot-welding process neglect the effect of the eddy current generated during the flow of the huge welding main current through the assembly of electrodes and work sheets. This work presents an analytical method to investigate the generation of eddy current and to determine the total effective welding current in spot-welding. The current distribution on the work sheet when it is fed by a conducting electrode is also investigated. The obtained current formula is based on electromagnetic principles, where a very strong magnetic field is generated in the core of the electrodes as well as in the materials of work sheets due to the flow of very high amperage. The final resultant effective current is the superposition of the electrode welding current and the induced eddy current in the electrode and work piece assembly. The results offer a viable mathematical model, which can be applied for a precise prediction of the effective value of welding current in spot-welding processes, if applied in a comprehensive model including all involved effects.


2004 ◽  
Vol 127 (4) ◽  
pp. 709-717 ◽  
Author(s):  
Wei Li

Electrode wear is inherent in the resistance spot welding process. It determines the electrical and mechanical contact condition and thus strongly affects the resistance spot weld quality. A practical approach to minimizing the electrode wear effect is to compensate the welding current as the electrodes wear. However, the existing methods for welding current compensation rely on either a predetermined stepper schedule or an expulsion detection algorithm. These methods are not reliable since the welding current is not determined based on the contact condition for each weld made in the welding process. This paper presents an on-line electrode wear estimation approach to determining the contact condition and the welding current needed to make every weld a good weld during the entire life of the electrodes. In the study, an incrementally coupled finite element simulation was first formulated to analyze the contact area behavior in the resistance spot welding process. A lumped parameter model was then developed to characterize the contact area change with the dynamic resistance measurement. A calibration and an estimation algorithm were subsequently devised for on-line applications. The proposed approach has been validated with experimental data. The results have shown that the estimation algorithm is robust under various process conditions including both welding current and electrode force.


Sign in / Sign up

Export Citation Format

Share Document