A numerical study of combustion and NOX emission characteristics of a lean premixed model gas turbine combustor

2020 ◽  
Vol 34 (4) ◽  
pp. 1795-1803
Author(s):  
Sung Ho Chang ◽  
Hyun Su Bak ◽  
Hyosun Yu ◽  
Chun Sang Yoo
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.


2007 ◽  
Vol 180 (2) ◽  
pp. 279-295 ◽  
Author(s):  
C. Duwig ◽  
D. Stankovic ◽  
L. Fuchs ◽  
G. Li ◽  
E. Gutmark

Author(s):  
Chao Zong ◽  
Yaya Lyu ◽  
Desan Guo ◽  
Chengqin Li ◽  
Tong Zhu

Micro gas turbine is one of the ideal prime movers for small-distributed energy systems. It can effectively reduce the emission of greenhouse gases and nitrogen oxides. Moreover, the use of micro gas turbines will contribute to burning fossil fuels in a much cleaner way. The staged combustion technology is the favorite way for low pollution combustion chamber such like. Therefore, the influence of the proportion of pilot fuel in the combustion chamber on pollutant emission deserves further study. The object of this research is the Double annular swirler (Das), which was applied to a 100 kW micro gas turbine combustion chamber. The combustion performance and emission characteristics under different Pilot Fuel Ratios (PFR) were obtained in prototype experimental system. Under the experimental conditions, Computational fluid dynamics (CFD) method was applied to research the reacting flow field and the formation of NOx in the combustion chamber and then analyze the influences of PFRs on combustion process. Experimental results show that the NOx emission of Das decreased at first and then increased with the augment of PFR. When PFR was near to 11%, the per unit NOx emission concentration reached its minimum. The numerical simulation agreed well with the experimental data. Further analysis of the simulation results indicate that there is a strong correlation between Φlocal and NOx concentration. When it is lower than a certain value, the number of nitrogen oxides will be significantly reduced. The value has a lot to do with the inlet air temperature and the pressure of the combustion chamber under the design condition, and it needs to be confirmed by calculating the adiabatic temperature. Simultaneously, we also find that although the percentage of total air flowing into the combustor remains unchanged, the increase of PFR would reduce the airflow ratio in inner swirler. This implies that for some particular combustion chambers, special attention should be paid to the changes in air allocation caused by PFR.


2019 ◽  
Vol 6 (5) ◽  
pp. 19-00266-19-00266
Author(s):  
Shintaro ITO ◽  
Masahiro UCHIDA ◽  
Soichiro KATO ◽  
Toshiro FUJIMORI ◽  
Hideaki KOBAYASHI

Sign in / Sign up

Export Citation Format

Share Document