Experimental and numerical study of flame structure and emissions in a micro gas turbine combustor

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.

Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
João Roberto Barbosa ◽  
Rob Johan Maria Bastiaans ◽  
Philip de Goey

Currently, high efficiency and low emissions are most important requisites for the design of modern gas turbines due to the strong environmental restrictions around the world. In the past years, alternative fuels have been considered for application in industrial gas turbines. Therefore, combustor performance, pollutant emissions and the ability to burn several fuels became of much concern and high priority has been given to the combustor design. This paper describes a methodology focused on the design of stationary gas turbines combustion chambers with the ability to efficiently burn conventional and alternative fuels. A simplified methodology is used for the calculations of the equilibrium temperature and chemical species in the primary zone of a gas turbine combustor. Direct fuel injection and diffusion flames, together with numerical methods like Newton-Raphson, LU Factorization and Lagrange Polynomials, are used for the calculations. Diesel, ethanol and methanol fuels were chosen for the numerical study. A computer code sequentially calculates the main geometry of the combustor. From the numerical simulation it is concluded that the basic gas turbine combustor geometry, for some operating conditions and burning diesel, ethanol or methanol, are of similar sizes, because the development of aerodynamic characteristics predominate over the thermochemical properties. It is worth to note that the type of fuel has a marked effect on the stability and combustion advancement in the combustor. This can be seen when the primary zone is analyzed under a steady-state operating condition. At full power, the pressure is 1.8 MPa and the temperature 1,000 K at the combustor inlet. Then, the equivalence ratios in the primary zone are 1.3933 (diesel), 1.4352 (ethanol) and 1.3977 (methanol) and the equilibrium temperatures for the same operating conditions are 2,809 K (diesel), 2,754 K (ethanol) and 2,702 K (methanol). This means that the combustor can reach similar flame stability conditions, whereas the combustion efficiency will require richer fuel/air mixtures of ethanol or methanol are burnt instead of diesel. Another important result from the numerical study is that the concentration of the main pollutants (CO, CO2, NO, NO2) is reduced when ethanol or methanol are burnt, in place of diesel.


Author(s):  
Chao Zong ◽  
Yaya Lyu ◽  
Desan Guo ◽  
Chengqin Li ◽  
Tong Zhu

Micro gas turbine is one of the ideal prime movers for small-distributed energy systems. It can effectively reduce the emission of greenhouse gases and nitrogen oxides. Moreover, the use of micro gas turbines will contribute to burning fossil fuels in a much cleaner way. The staged combustion technology is the favorite way for low pollution combustion chamber such like. Therefore, the influence of the proportion of pilot fuel in the combustion chamber on pollutant emission deserves further study. The object of this research is the Double annular swirler (Das), which was applied to a 100 kW micro gas turbine combustion chamber. The combustion performance and emission characteristics under different Pilot Fuel Ratios (PFR) were obtained in prototype experimental system. Under the experimental conditions, Computational fluid dynamics (CFD) method was applied to research the reacting flow field and the formation of NOx in the combustion chamber and then analyze the influences of PFRs on combustion process. Experimental results show that the NOx emission of Das decreased at first and then increased with the augment of PFR. When PFR was near to 11%, the per unit NOx emission concentration reached its minimum. The numerical simulation agreed well with the experimental data. Further analysis of the simulation results indicate that there is a strong correlation between Φlocal and NOx concentration. When it is lower than a certain value, the number of nitrogen oxides will be significantly reduced. The value has a lot to do with the inlet air temperature and the pressure of the combustion chamber under the design condition, and it needs to be confirmed by calculating the adiabatic temperature. Simultaneously, we also find that although the percentage of total air flowing into the combustor remains unchanged, the increase of PFR would reduce the airflow ratio in inner swirler. This implies that for some particular combustion chambers, special attention should be paid to the changes in air allocation caused by PFR.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


Author(s):  
Carmine Russo ◽  
Giulio Mori ◽  
Vyacheslav V. Anisimov ◽  
Joa˜o Parente

Chemical Reactor Modelling approach has been applied to evaluate exhaust emissions of the newly designed ARI100 (Patent Pending) recuperated micro gas turbine combustor developed by Ansaldo Ricerche SpA. The development of the chemical reactor network has been performed based on CFD reacting flow analysis, obtained with a global 2-step reaction mechanism, applying boundary conditions concerning the combustion chamber at atmospheric pressure, with 100% of thermal load and fuelled with natural gas. The network consists of 11 ideal reactors: 6 perfectly stirred reactors, and 5 plug flow reactors, including also 13 mixers and 12 splitters. Simulations have been conducted using two detailed reaction mechanisms: GRI Mech 3.0 and Miller & Bowman reaction mechanisms. Exhaust emissions have been evaluated at several operating conditions, obtained at different pressure, and considering different fuel gases, as natural gas and a high H2 content SYNGAS fuel. Furthermore, emissions at different thermal loads have been investigated when natural gas at atmospheric pressure is fuelled. Simulation results have been compared with those obtained from combustion experimental campaign. CO and NOx emissions predicted with CRM approach closely match experimental results at representative operating conditions. Ongoing efforts to improve the proposed reactors network should allow extending the range of applicability to those operating conditions whose simulation results are not completely satisfying. Given the small computational effort required, and the accuracy in predicting combustor experimental exhaust emissions, both CO and NOx, the CRM approach turnout to be an efficient way to reasonably evaluate exhaust emissions of a micro gas turbine combustor.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Abstract Energy and climate change policies associated with the continuous increase in natural gas costs pushed governments to invest in renewable energy and alternative fuels. In this perspective, the idea to convert gas turbines from natural gas to syngas from biomass gasification could be a suitable choice. Biogas is a valid alternative to natural gas because of its low costs, high availability and low environmental impact. Syngas is produced with the gasification of plant and animal wastes and then burnt in gas turbine combustor. Although synfuels are cleaned and filtered before entering the turbine combustor, impurities are not completely removed. Therefore, the high temperature reached in the turbine nozzle can lead to the deposition of contaminants onto internal surfaces. This phenomenon leads to the degradation of the hot parts of the gas turbine and consequently to the loss of performance. The amount of the deposited particles depends on mass flow rate, composition and ash content of the fuel and on turbine inlet temperature (TIT). Furthermore, compressor fouling plays a major role in the degradation of the gas turbine. In fact, particles that pass through the inlet filters, enter the compressor and could deposit on the airfoil. In this paper, the comparison between five (5) heavy-duty gas turbines is presented. The five machines cover an electrical power range from 1 MW to 10 MW. Every model has been simulated in six different climate zones and with four different synfuels. The combination of turbine fouling, compressor fouling, and environmental conditions is presented to show how these parameters can affect the performance and degradation of the machines. The results related to environmental influence are shown quantitatively, while those connected to turbine and compressor fouling are reported in a more qualitative manner. Particular attention is given also to part-load conditions. The power units are simulated in two different operating conditions: 100 % and 80 % of power rate. The influence of this variation on the intensity of fouling is also reported.


Author(s):  
Hannah Seliger ◽  
Michael Stöhr ◽  
Zhiyao Yin ◽  
Andreas Huber ◽  
Manfred Aigner

This paper presents an experimental and numerical study of the flow field and heat release (HRL) zone of a six-nozzle FLOX®-based combustor at atmospheric pressure. The combustor is suitable for the use in a micro gas turbine (MGT) based combined heat and power (CHP) system with an electrical power output of 3 kW. The velocity field was measured using stereoscopic particle image velocimetry (PIV). The heat release zone was visualized by OH*-chemiluminescence (OH* CL) and the flame front by OH planar laser-induced fluorescence (OH PLIF). The results are compared with CFD simulations to evaluate the quality of the applied numerical turbulence and combustion models. The simulations were performed using Reynolds-averaged Navier-Stokes equations in combination with the k-ω-SST-turbulence model. Since the FLOX®-based combustion is dominated by chemical kinetics, a reaction mechanism with detailed chemistry, including 22 species and 104 reactions (DRM22), has been chosen. To cover the turbulence-chemistry interaction, an assumed probability density function (PDF) approach for species and temperature was used. Except for minor discrapancies in the flow field, the results show that the applied models are suitable for the design process of the combustor. In terms of the location of the heat release zone, it is necessary to consider possible heat losses, especially at lean operating conditions with a distributed heat release zone.


Author(s):  
Friederike C. Mund ◽  
Pericles Pilidis

Gas turbines for power generation are exposed to a variety of ambient conditions and are therefore bound to breathe contaminated airflow, thus degrading the engines internal gas path. In particular, accumulated debris on the compressor blades reduces engine efficiency. To recover this performance loss, online compressor washes may be performed. Cleaning fluid is injected through the nozzles upstream of the compressor to wash off the debris from the blades. This paper presents a numerical study of a generic compressor washing system based on an application case for a heavy duty gas turbine power plant. The inlet duct of the engine was modeled and droplet trajectories were calculated. Different spray patterns including single jet and full cone have been investigated for different ranges of injection velocity and droplet size. The spray angle was evaluated experimentally and was used to model the full cone spray pattern. The boundary conditions for the airflow were iterated with a performance simulation tool to match pressure loss and mass flow. To investigate the effect of different operating conditions on the airflow and spray distribution, an installation scenario of the engine at altitude on a hot summer day was modeled. The scenario was based on a review of plant installations and local meteorological conditions. Fluid concentration plots at the compressor inlet plane were evaluated for the different computational cases. Generally with lower injection momentum, the water droplets were significantly deflected by the main airflow. Higher injection velocity and droplet size reduced the effect of the main airflow. Different operating conditions and the significant change of air mass flow affected the spray distribution of the washing system at the compressor inlet. This can be compensated by adjusting the injection angles.


2016 ◽  
Vol 23 (3) ◽  
pp. 39-49 ◽  
Author(s):  
Nader R. Ammar ◽  
Ahmed I. Farag

Abstract Strong restrictions on emissions from marine power plants will probably be adopted in the near future. One of the measures which can be considered to reduce exhaust gases emissions is the use of alternative fuels. Synthesis gases are considered competitive renewable gaseous fuels which can be used in marine gas turbines for both propulsion and electric power generation on ships. The paper analyses combustion and emission characteristics of syngas fuel in marine gas turbines. Syngas fuel is burned in a gas turbine can combustor. The gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The analysis is performed numerically using the computational fluid dynamics code ANSYS FLUENT. Different operating conditions are considered within the numerical runs. The obtained numerical results are compared with experimental data and satisfactory agreement is obtained. The effect of syngas fuel composition and the swirl number values on temperature contours, and exhaust gas species concentrations are presented in this paper. The results show an increase of peak flame temperature for the syngas compared to natural gas fuel combustion at the same operating conditions while the NO emission becomes lower. In addition, lower CO2 emissions and increased CO emissions at the combustor exit are obtained for the syngas, compared to the natural gas fuel.


Author(s):  
M. Balestri ◽  
D. Cecchini ◽  
V. Cinti

In 1991 ENEL started a research program on gas turbine problems, an important activity which contributed to the realisation of the ENEL Sesta Gas Turbine Test Facility located in Radicondoli, Siena, Italy [1]. The aim of this program was to increase ENEL’s competitiveness in the liberalised energy market dominated by the increasing application of gas turbines in combined cycles and re-powered power stations due to lower costs and the higher performances. The first testing campaigns carried out in Sesta were conducted with conventional fuels such as natural gas and diesel oil. In 1998, ENEL built a specific plant able to simulate alternative fuels by mixing different pure components. Pure gases that can be added to the NG to simulate the syngas are: H2, CO, CO2, N2, steam and ammonia (NH3). Throughout the years, many test campaigns have been conducted at ENEL using industrial gas turbine combustion systems, as well as using a wide variety of fuels and technologies. These tests were carried out for ENEL purpose or for external industrial customers. This paper describes the main characteristics of the ENEL Sesta facility with particular reference to the alternative fuels plants. Two tests carried out at the Sesta facility by ENEL using different industrial combustion systems and non-conventional fuels are also described. The first one refers to the use of H2/CH4 mixtures in a diffusion flame gas turbine combustor. The second one concerns the co-combustion of methane and syngas from biomass in a modified DLN gas turbine combustor.


Author(s):  
Mark K. Lai

A numerical method is presented for predicting steady, three-dimensional, turbulent, liquid spray combusting flows in a gas turbine combustor. The Eulerian conservation equations for gas flow and the Lagrangian conservation equations for discrete fuel liquid droplets were solved. The trajectory computation of the fuel droplets provided the source terms for all the gas-phase equations. A standard k-ε submodel was used for turbulence. The combustion submodel used was a global local equilibrium model, where chemical species (CxHy, O2, CO2, H2O, CO, H2 and N2) approached local thermodynamic equilibrium with a rate determined by a combination of local turbulent mixing and global chemical kinetics times. The numerical methodology for gas-phase calculations involved a staggered finite-volume formulation with a multi-block curvilinear orthogonal coordinate computational grid, and the PISO algorithm. This numerical code was applied to a model gas turbine combustor similar to that of the Allison 570KF currently in use by the Canadian Navy. The combustor was equipped with an advanced airblast fuel nozzle. The calculations included the analysis of the internal passages of the fuel nozzle. Through the numerical study at full-power and low-cruise operating conditions, a better understanding of the physical processes of flow and temperature fields inside the primary zone was obtained. Predicted hot spots corresponded to locations where deterioration of the combustor liner has been observed in practice.


Sign in / Sign up

Export Citation Format

Share Document