Magma intrusion in the upper crust of the Abu Dabbab area, South East of Egypt from Vp and Vp/Vs tomography

2009 ◽  
Vol 20 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Ahmed Hosny ◽  
Sherif M. El-Hady ◽  
A. Mohamed Abou El-Ela ◽  
Giuliano F. Panza ◽  
Ali Tealeb ◽  
...  
Keyword(s):  
2002 ◽  
Vol 139 (6) ◽  
pp. 699-706 ◽  
Author(s):  
A. CAGGIANELLI ◽  
G. PROSSER

Thick granitoid sheets represent a considerable percentage of Palaeozoic crustal sections exposed in Calabria. High thermal gradients are recorded in upper and lower crustal regional metamorphic rocks lying at the roof and base of the granitoids. Ages of peak metamorphism and emplacement of granitoids are mostly overlapping, suggesting a connection between magma intrusion and low-pressure metamorphism. To analyse this relationship, thermal perturbation following granitoid emplacement has been modelled. The simulation indicates that, in the upper crust, the thermal perturbation is short-lived. In contrast, in the lower crust temperatures greater than 700°C are maintained for 12 Ma, explaining granulite formation, anatexis and the following nearly isobaric cooling. An even longer perturbation can be achieved introducing the effect of mantle lithosphere thinning into the model.


2019 ◽  
Author(s):  
Ian Anderson ◽  
◽  
Harold H. Stowell ◽  
Joshua J. Schwartz ◽  
Keith A. Klepeis ◽  
...  
Keyword(s):  

2017 ◽  
Vol 218 ◽  
pp. 12-21 ◽  
Author(s):  
Liang Wang ◽  
Shimin Liu ◽  
Yuan-Ping Cheng ◽  
Guang-zhi Yin ◽  
Pin-kun Guo ◽  
...  

2021 ◽  
pp. 228976
Author(s):  
Sam Poppe ◽  
Eoghan P. Holohan ◽  
Michael Rudolf ◽  
Matthias Rosenau ◽  
Olivier Galland ◽  
...  

2019 ◽  
Vol 60 (5) ◽  
pp. 907-944 ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Olivier Namur ◽  
Adeline Dutrieux ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød ◽  
...  

Abstract Where and how arc magmas are generated and differentiated are still debated and these questions are investigated in the context of part of the Andean arc (Chilean Southern Volcanic Zone) where the continental crust is thin. Results are presented for the La Picada stratovolcano (41°S) that belongs to the Central Southern Volcanic Zone (CSVZ) (38°S–41·5°S, Chile) which results from the subduction of the Nazca plate beneath the western margin of the South American continent. Forty-seven representative samples collected from different units of the volcano define a differentiation trend from basalt to basaltic andesite and dacite (50·9 to 65·6 wt % SiO2). This trend straddles the tholeiitic and calc-alkaline fields and displays a conspicuous compositional Daly Gap between 57·0 and 62·7 wt % SiO2. Interstitial, mostly dacitic, glass pockets extend the trend to 76·0 wt % SiO2. Mineral compositions and geochemical data indicate that differentiation from the basaltic parent magmas to the dacites occurred in the upper crust (∼0·2 GPa) with no sign of an intermediate fractionation stage in the lower crust. However, we have currently no precise constraint on the depth of differentiation from the primary magmas to the basaltic parent magmas. Stalling of the basaltic parent magmas in the upper crust could have been controlled by the occurrence of a major crustal discontinuity, by vapor saturation that induced volatile exsolution resulting in an increase of melt viscosity, or by both processes acting concomitantly. The observed Daly Gap thus results from upper crustal magmatic processes. Samples from both sides of the Daly Gap show contrasting textures: basalts and basaltic andesites, found as lavas, are rich in macrocrysts, whereas dacites, only observed in crosscutting dykes, are very poor in macrocrysts. Moreover, modelling of the fractional crystallization process indicates a total fractionation of 43% to reach the most evolved basaltic andesites. The Daly Gap is thus interpreted as resulting from critical crystallinity that was reached in the basaltic andesites within the main storage region, precluding eruption of more evolved lavas. Some interstitial dacitic melt was extracted from the crystal mush and emplaced as dykes, possibly connected to small dacitic domes, now eroded away. In addition to the overall differentiation trend, the basalts to basaltic andesites display variable MgO, Cr and Ni contents at a given SiO2. Crystal accumulation and high pressure fractionation fail to predict this geochemical variability which is interpreted as resulting from variable extents of fractional crystallization. Geothermobarometry using recalculated primary magmas indicates last equilibration at about 1·3–1·5 GPa and at a temperature higher than the anhydrous peridotite solidus, pointing to a potential role of decompression melting. However, because the basalts are enriched in slab components and H2O compared to N-MORB, wet melting is highly likely.


Sign in / Sign up

Export Citation Format

Share Document