Effect of coir fiber content and compatibilizer on the properties of unidirectional coir fiber/polypropylene composites

2014 ◽  
Vol 15 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Haydar U. Zaman ◽  
M. D. H. Beg
2015 ◽  
Vol 668 ◽  
pp. 28-38 ◽  
Author(s):  
Claudio Roberto Passatore ◽  
Alcides Lopes Leão ◽  
Derval dos Santos Rosa

The main objective of this investigation was to study the properties of composites of polypropylene (PP) containing different proportions (20, 40 and 60% wt%) of coir short fiber (natural vegetable fiber) without treatment of fibers, for use in products by injection with applications in the automotive industries, construction and other segments. Samples were prepared in a only stage using a high intensity thermokinetic mixer (K-Mixer). Additives were used in the mass fraction of 3 wt% compatibilizer (PP-g-MA), 2.2 wt% processing additive and 0.12 wt% thermal antioxidant. The composites were characterized by tensile test according to ASTM D638-10. The surface properties of the polymeric matrix with additives were studied by determining the contact angle (CA) in a sessile drop tensiometer and the carbonyl index (CI) by Fourier-transform infrared spectroscopy (FTIR). Thermal properties of the PP and the composition were evaluated by thermogravimetric test, and the interface of the fiber and the matrix in the composites were evaluated using images from scanning electron microscopy (SEM). The CA analysis showed that the PP matrix with additives has become less hydrophobic and the FTIR and the CI that there was a better stabilization of the PP with additives. There was an increase in thermal stability of the composites for all fiber content, which was up to 15 °C above PP for coir fiber composites. In the Young's modulus values showed that the inclusion of fibers reinforced the polymeric matrix and increased the stiffness of the composites, especially in composites containing 60% (wt%) in which the values were ~1.7 times greater than the polypropylene. Images of micrographs showed the interaction of the fiber in the matrix and that despite the hydrophilic character of the fibers and hydrophobic character of the PP, the composites showed non-homogeneous interfaces. These findings confirm the feasibility of using high level of coir fiber in polypropylene composites even without pretreatment of the fibers and the preparation of samples by injection.


2008 ◽  
Vol 41-42 ◽  
pp. 313-316 ◽  
Author(s):  
Li Ping He ◽  
Yong Tian ◽  
Lu Lin Wang

Natural fiber reinforced polypropylene composites (NF/PP) have attracted a lot of attention because of their light weight, good mechanical properties, recyclable and environmental friendly features. This work has successfully fabricated ramie fiber reinforced polypropylene composites (RF/PP) with a hybrid method of melt-blending and injection molding. Different RF/PP eco-materials have been fabricated by varying the fiber length, fiber content and way of fiber pre-treatment. This paper studied the mechanical properties of the fabricated RF/PP composites in depth by investigating the mechanical behaviors of RF/PP and microstructures of the ruptured surfaces. The results show that the increases of fiber length and fiber content can improve the tensile strength, flexural strength and compression strength apparently, but result in negative influences on the impact strength and elongation behaviors of RF/PP composites. The optimal addition amount of ramie fiber is around 20 wt%. The pre-treatment of ramie fiber in 10%~15% NaOH is good to the mechanical properties of RF/PP. The fiber length can be varied in the range of 3-8 mm. It is expected that the fabricated RF/PP composites can be applied to automobile industry as environmental friendly eco-materials.


UKaRsT ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 151
Author(s):  
Anita Widianti ◽  
Willis Diana ◽  
Maratul Hasana

Indonesia is the largest coconut producing country in the world. However, the resulting coir waste is still rarely used for structural materials. This research studied the effect of random inclusion of coir fiber on the shear strength of clay with high plasticity. The carried test in this study is a direct shear strength test. The fiber content variations used are 0%, 0.25%, 0.50%, 0.75%, and 1% of the dry weight of the mixture with a fiber length of between 30 mm to 50 mm. The results show that the reinforcement of coir fiber can increase the cohesion and friction angle. The maximum increase in cohesion value was obtained at fiber content of 0.75%, which was 39.66%. The increase in the value of the friction angle was obtained at 1% fiber content, which was 46.67%. The optimum coir fiber content was achieved at the fiber content of 0.75%. With this content, the value of the shear strength reaches its maximum with an increase of 39.4% at a normal stress of 8.071 kPa.


2009 ◽  
Vol 44 (4) ◽  
pp. 401-416 ◽  
Author(s):  
Haydaruzzaman ◽  
A.H. Khan ◽  
M.A. Hossain ◽  
Mubarak A. Khan ◽  
Ruhul A. Khan

2019 ◽  
Vol 33 (9) ◽  
pp. 1175-1195 ◽  
Author(s):  
Arun M Panicker ◽  
Rose Maria ◽  
KA Rajesh ◽  
TO Varghese

Waste natural fibers, bit coir fiber residue of traditional coir industries, and sugarcane bagasse fibers were subjected to chemical modifications via alkaline steam explosion treatments toward the extraction of reinforcing fibers with better compatibility and reinforcing characteristics in the polymer matrix. The treated fibers were utilized in the fabrication of composites with polypropylene (PP) as the base polymer with the aid of maleic anhydride–grafted PP as the compatibilizer. Percent composition of fiber in the composites was decided to facilitate maximum replacement of the matrix and further applicability in large-scale continuous polymeric production processes. Mechanical, thermal, and morphological characterization of the composites reveals the best composition to be of 30% composition, in the added view of maximum replacement of polymer matrix with the reinforcing filler, retention of requisite properties, reduced cost of manufacture and inventory, and reduction in the carbon footprint per unit dimensions in comparison with the wholly polymer component. The thermal properties of coir fiber-reinforced composites showed good improvement up to 134.5°C increase in onset degradation temperature while retaining matrix properties for sugarcane bagasse-reinforced composites.


Sign in / Sign up

Export Citation Format

Share Document