Preparation of Polypropylene Composites with High Levels of Coir Short Fiber for Use in Products by Injection

2015 ◽  
Vol 668 ◽  
pp. 28-38 ◽  
Author(s):  
Claudio Roberto Passatore ◽  
Alcides Lopes Leão ◽  
Derval dos Santos Rosa

The main objective of this investigation was to study the properties of composites of polypropylene (PP) containing different proportions (20, 40 and 60% wt%) of coir short fiber (natural vegetable fiber) without treatment of fibers, for use in products by injection with applications in the automotive industries, construction and other segments. Samples were prepared in a only stage using a high intensity thermokinetic mixer (K-Mixer). Additives were used in the mass fraction of 3 wt% compatibilizer (PP-g-MA), 2.2 wt% processing additive and 0.12 wt% thermal antioxidant. The composites were characterized by tensile test according to ASTM D638-10. The surface properties of the polymeric matrix with additives were studied by determining the contact angle (CA) in a sessile drop tensiometer and the carbonyl index (CI) by Fourier-transform infrared spectroscopy (FTIR). Thermal properties of the PP and the composition were evaluated by thermogravimetric test, and the interface of the fiber and the matrix in the composites were evaluated using images from scanning electron microscopy (SEM). The CA analysis showed that the PP matrix with additives has become less hydrophobic and the FTIR and the CI that there was a better stabilization of the PP with additives. There was an increase in thermal stability of the composites for all fiber content, which was up to 15 °C above PP for coir fiber composites. In the Young's modulus values showed that the inclusion of fibers reinforced the polymeric matrix and increased the stiffness of the composites, especially in composites containing 60% (wt%) in which the values were ~1.7 times greater than the polypropylene. Images of micrographs showed the interaction of the fiber in the matrix and that despite the hydrophilic character of the fibers and hydrophobic character of the PP, the composites showed non-homogeneous interfaces. These findings confirm the feasibility of using high level of coir fiber in polypropylene composites even without pretreatment of the fibers and the preparation of samples by injection.

The present paper researches the impact of differing fiber content and speed on tensile flexural, HDT and effect properties of characteristic fiber (sisal) fortified polypropylene composites (NF). The support fiber (Sisal-Fiber) was gathered from the foliage of locally accessible tree through the procedure of water retting and mechanical extraction. Poor adhesion among fiber and matrix is regularly experienced issue in characteristic fiber-strengthened composites and to conquer this issue, physical and substance medicines were performed for surface adjustment of fibers. The expansion of compatibilizer to the matrix like, is enhanced the adhesion attributes of the fiber. The outcomes it proposes that the high level of fibers combined with a higher screw speed improves the mechanical properties of the Sisal Fiber-Polypropylene plastic composite due to a high interaction between the fiber and the matrix and an even distribution of the fiber in the matrix.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1694
Author(s):  
Noemi Jardón-Maximino ◽  
Gregorio Cadenas-Pliego ◽  
Carlos A. Ávila-Orta ◽  
Víctor Eduardo Comparán-Padilla ◽  
Luis E. Lugo-Uribe ◽  
...  

Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25–5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


2019 ◽  
Vol 8 (1) ◽  
pp. 619-627 ◽  
Author(s):  
Shaolin Li ◽  
Xiuhua Guo ◽  
Shengli Zhang ◽  
Jiang Feng ◽  
Kexing Song ◽  
...  

AbstractArc erosion behaviors of TiB2/Cu composites with single-scale and dual-scale TiB2 particles fabricated by powder metallurgy were studied. It was revealed that the dual-scale TiB2/Cu composites had fewer structure defects compared with the single-scale TiB2/Cu composites, and TiB2 particles with different size were uniformly distributed in the copper matrix. When the ratio of 2 μm over 50 μm TiB2 particles is 1:2, the density of TiB2/Cu composite is 98.5% and shows best mechanical and thermal properties. The arc duration and energy of TiB2/Cu composites increase with the increase of electric current in contact material testing. Compared with the single-scale TiB2/Cu composites, the arc erosion of dual-scale TiB2/Cu composite with 2 μm+50 μm (1:2) TiB2 was slighter. The anode bulge area and cathode erosion pit of dual-scale TiB2/Cu composite was smaller. The dual-scale TiB2 particles optimize the microstructure and thermal stability of the composite, which is conducive to alleviating arc erosion. The synergistic effect of different sized TiB2 particles in the matrix improved the arc erosion resistance of TiB2/Cu composite during arcing.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Shibin Nie ◽  
Chi Zhang ◽  
Chao Peng ◽  
De-yi Wang ◽  
Daowei Ding ◽  
...  

A char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP) were selected to form novel intumescent flame retardant system to prepare flame retardant polypropylene (PP) composites, and then the influences of nanoporous nickel phosphates (NiP) on the thermal and flame retardant properties of flame retardant PP composites were studied by the real time FTIR (RTFTIR) spectra, limited oxygen index (LOI) test, and the scanning electron microscopy. RTFTIR shows the addition of NiP can improve the thermal stability of flame retardant PP composites. LOI test shows LOI value is increased with the increase of the content of NiP, and the optimized concentration of NiP is 1.0%. Furthermore, smoke toxicity of the novel flame retardant PP composites was studied by mice experiment. The upper limit of the no death smoke concentration of the composite is 12.37 mg/L.


Sign in / Sign up

Export Citation Format

Share Document