Azoic Deep Dyeing of Silk and UV Protection Using Plant Polyphenols and Diazonium Coupling

2020 ◽  
Vol 21 (5) ◽  
pp. 1052-1060
Author(s):  
Nattaya Vuthiganond ◽  
Monthon Nakpathom ◽  
Rattanaphol Mongkholrattanasit
2013 ◽  
Vol 19 (34) ◽  
pp. 6186-6206 ◽  
Author(s):  
Anthony Ananga ◽  
Vasil Georgiev ◽  
Violeta Tsolova

2015 ◽  
Vol 16 (12) ◽  
pp. 1070-1077
Author(s):  
Carla Villa ◽  
Chiara Lacapra ◽  
Roberto Rosa ◽  
Paolo Veronesi ◽  
Cristina Leonelli

2015 ◽  
Vol 11 (3) ◽  
pp. 354-359 ◽  
Author(s):  
S.I. Senatova ◽  
A.R. Mandal ◽  
F.S. Senatov ◽  
N. Anisimova ◽  
S.E. Kondakov ◽  
...  

2019 ◽  
Vol 18 (8) ◽  
pp. 581-597 ◽  
Author(s):  
Ambreen Fatima ◽  
Yasir Hasan Siddique

Flavonoids are naturally occurring plant polyphenols found universally in all fruits, vegetables and medicinal plants. They have emerged as a promising candidate in the formulation of treatment strategies for various neurodegenerative disorders. The use of flavonoid rich plant extracts and food in dietary supplementation have shown favourable outcomes. The present review describes the types, properties and metabolism of flavonoids. Neuroprotective role of various flavonoids and the possible mechanism of action in the brain against the neurodegeneration have been described in detail with special emphasis on the tangeritin.


2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


Sign in / Sign up

Export Citation Format

Share Document