Preparation and Properties of a Modified Fe2O3 Pigment for Dope Dyeing Ultrahigh Molecular Weight Polyethylene (UHMWPE) Fibers by Melt Spinning

Author(s):  
Xiaochun Wang ◽  
Liping Zhang ◽  
Ming Liu ◽  
Jianfei Zhang ◽  
Guoliang Zhao
2021 ◽  
Vol 3 ◽  
pp. 42-54
Author(s):  
V. I. Mamonov ◽  

Completely saturated chemical bonds in ultrahigh-molecular-weight polyethylene (UHMWPE) fibers — are a reason for their low surface energy (FSE), i.e. inert properties. Elongated crystal structure of UHMWPE molecules ensures high anisotropic tensile strength of the fibers. An inertness is a problem for utilization these fibers in high-strength composites production. Surface energy (SE) difference of the fibers and a binder in fiber/matrix system hinders chemical interaction at interphase boundary and worsens fiber wettability. Increase in their FSE is a topical task for this problem decision. Necessary condition of FSE increase is the integrity of molecule structure, lying under modified surface. Low temperature, nonequilibrium plasma (LTP) treatment in a medium of argon and argon/propane mixture, used in this work for plasma activation of fibers’ surface, permits to abide by this condition. However, plasma ion bombardment during a process of activation can modify interior crystal structure and, as a result, decrease their strength. The rovings SK75 (Holland) and D800 (China) were used for study of the properties of UHMWPE fibers after plasma treatment. Activation effect on FSE, strength, and fibers’ wetting by water and epoxy binder before and after ageing was studied. Capillary wetting of the fibers by distilled water used for FSE evaluation. The data of filaments surface structure and their diameter change at maximal load, obtained by optical microscope study, were used for the analysis of FSE and epoxy matrix effect on the strength of fiber/matrix systems. Essential distinction of SK75 and D800 fibers properties is ascertained. Negative effect of fibers’ and matrix’s stiffness, as well as increased FSE of stiff fibers on the strength of fiber/matrix system is revealed.


2020 ◽  
Vol 32 (9) ◽  
pp. 992-1000 ◽  
Author(s):  
Raouf Belgacemi ◽  
Mehdi Derradji ◽  
Abdelrazak Mouloud ◽  
Djalal Trache ◽  
Abdeldjalil Zegaoui ◽  
...  

In this study, new high-performance composite laminates were prepared from epoxy resin and surface modified ultrahigh-molecular-weight polyethylene (UHMWPE) fibers. The UHMWPE fibers underwent two types of chemical modifications, namely through chromic acid and potassium permanganate oxidations. The adopted chemical procedure aimed the grafting of polar groups on the outer surface of fibers for an improved chemical and physical compatibility with the polymeric matrix. The efficiency of the grafting methodology was confirmed by vibrational, thermal, and morphological analyses, and the grafting mechanism was thoroughly discussed. Furthermore, composite laminates were prepared to study the effects of chemical treatments on the mechanical and morphological properties of the resulting composites. The grafting techniques allowed consequent improvements in the tensile and bending properties, up to 34% and 23% for the tensile and flexural strengths, respectively. The study of the fractured surfaces confirmed the exceptional compatibility between the fillers and the polymeric matrix and further corroborated the mechanical findings. Finally, the adopted modification techniques can be regarded as cost-effective and highly suitable for the manufacturing of structural composites for advanced applications.


2012 ◽  
Vol 627 ◽  
pp. 761-764
Author(s):  
Tao Zhang ◽  
Tian Ma ◽  
Jian Chun Zhang ◽  
Peng Gang Gao ◽  
Hua Zhang ◽  
...  

MWCNT/Ultrahigh-molecular-weight polyethylene (MWCNT/UHMWPE) composite was prepared by adding purified MWCNTs into the precursor solution of UHMWPE. Based on that, MWCNT/UHMWPE fibers were obtained using a gel spinning-molding technique. The thermal, mechanical and aggregation structure of MWCNT/UHMWPE fibers were characterized by TGA, mechanical property measurement and XRD, respectively. The results indicated the incorporation of MWCNTs into UHMWPE macromolecular chains have not change the aggregation structure of UHMWPE significantly, and the as-prepared MWCNT/UHMWPE fibers have evidently improved thermal stability and mechanical strength compared with the pristine UHMWPE fibers.


2019 ◽  
Vol 49 (8) ◽  
pp. 1011-1035 ◽  
Author(s):  
Fei Wang ◽  
Lichao Liu ◽  
Ping Xue ◽  
Mingyin Jia ◽  
Suwei Wang ◽  
...  

The influence of spinning temperature on ultrahigh-molecular-weight polyethylene/high-density polyethylene as-spun blend filaments and the influence of drawing temperature on ultrahigh-molecular-weight polyethylene/high-density polyethylene-blend fibers were investigated. The results showed that the optimum spinning and hot-drawing temperatures were 310℃ and 85℃, respectively, and blending with high-density polyethylene improved the orienting ability of the molecular chains and the crystallization ability. The blend filaments spun at 310℃ had the best molecular chain orientation, crystallinity and crystal orientation of the filaments examined; both lower and higher spinning temperatures were detrimental to the crystal structure growth of the as-spun blend filaments. The optimum drawing temperature of the blend fibers was 85℃, which resulted in blend fibers with the best molecular chain orientation, crystallization, and crystal orientation as well as the thinnest grains of the fibers examined. The highest tensile strength and initial modulus were 1204 MPa and 20.4 GPa, respectively; these high values can be attributed to the fibrillar structure, which consisted of extended molecular chains and thin grains. The results in this paper can help disclose the effect mechanism of formation temperature on the melt spinning method used to produce high-strength ultrahigh-molecular-weight polyethylene fibers.


Sign in / Sign up

Export Citation Format

Share Document