The Natural Fiber Reinforced Thermoplastic Composite Made of Woven Bamboo Fiber and Polypropylene

Author(s):  
Bo-Jyun Wang ◽  
Wen-Bin Young
2005 ◽  
Vol 297-300 ◽  
pp. 1529-1533
Author(s):  
Jae Kyoo Lim ◽  
Jun Hee Song ◽  
Jun Yong Choi ◽  
Hyo Jin Kim

In recent years, the use of natural fibers as reinforcements in polymer composites to replace synthetic fibers like glass is presently receiving increasing attention. Because of their increasing use combined with high demand, the cost of thermosetting resin has increased rapidly over the past decades. However the widely used synthetic fillers such as glass fiber are very expensive compared to natural fibers. Natural fiber-reinforced thermosetting composites are more economized to produce than the original thermosetting. Moreover the use of natural fiber in thermosetting composites is highly beneficial, because the use of natural fibers will be increased. In this study, a bamboo fiber-reinforced thermoplastic composite that made the RTM was evaluated to mechanical properties.


Author(s):  
Ahmed Fotouh ◽  
John Wolodko

Over the past decade, there has been an increased demand for products manufactured using sustainable materials. Natural fiber composites are seen as an excellent replacement for synthetic fiber composites due to their low density, good mechanical properties (stiffness), good thermal/acoustic insulation properties and environmental benefits (waste stream utilization and low carbon footprint). While there has been a considerable number of studies examining the short-term behavior of natural fiber composites, very limited work has been done to characterize their long-term durability under cyclic loading. In this study, the fatigue behavior of a natural fiber reinforced thermoplastic composite material was investigated. Cyclic fatigue experiments were conducted on hemp fiber reinforced high density polyethylene (HDPE) at various fiber volume fractions, and under both dry and wet ambient conditions. Using a stress level concept, a generalized model was developed to predict the fatigue life of the various composite formulations tested. The concept of pseudo-plastic flow was incorporated in the fatigue model to form a new model, which is capable of simulating fatigue behavior at different frequencies, fatigue stress ratios and volume fractions.


2019 ◽  
Vol 38 ◽  
pp. 1121-1129 ◽  
Author(s):  
D.K. Selvaraj ◽  
F.J.G. Silva ◽  
R.D.S.G. Campilho ◽  
A. Baptista ◽  
G.F.L. Pinto

2021 ◽  
Vol 173 ◽  
pp. 114120
Author(s):  
Jianxiu Hao ◽  
Xin Yi ◽  
Guanggong Zong ◽  
Yongming Song ◽  
Weihong Wang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2650
Author(s):  
Yang Ban ◽  
Wei Zhi ◽  
Mingen Fei ◽  
Wendi Liu ◽  
Demei Yu ◽  
...  

This study aims to prepare bamboo-fiber-reinforced cement composites and provide a solution to the issue of poor interfacial adhesion between bamboo fibers and cement matrix. The original bamboo fibers were modified by three moderately low-cost and easy-to-handle treatments including glycerol, aluminate ester, and silane treatments. The performance of the modified bamboo-fiber-reinforced cement composites was evaluated by a series of mechanical and durability tests, including flexural and compressive strength, water absorption, chloride ion penetration, drying shrinkage, freeze–thaw resistance, and carbonization. In addition, the microstructures of composites were characterized using a scanning electron microscope (SEM). The results showed that the composites reinforced with glycerol-modified bamboo fibers had 14% increased flexural strength and comparable compressive strength. From durability perspectives, all treatments showed similar performance in drying shrinkage, whereas aluminate ester treatment was the most effective in terms of impermeability, chloride resistance, freeze–thaw resistance, and carbonization. The results could provide insights to efficient and effective natural fiber treatment to enable better performance of natural-fiber-reinforced cement-based materials.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Sign in / Sign up

Export Citation Format

Share Document