Effects of Matrix on Mechanical Property Test Bamboo Fiber Composite Materials

2005 ◽  
Vol 297-300 ◽  
pp. 1529-1533
Author(s):  
Jae Kyoo Lim ◽  
Jun Hee Song ◽  
Jun Yong Choi ◽  
Hyo Jin Kim

In recent years, the use of natural fibers as reinforcements in polymer composites to replace synthetic fibers like glass is presently receiving increasing attention. Because of their increasing use combined with high demand, the cost of thermosetting resin has increased rapidly over the past decades. However the widely used synthetic fillers such as glass fiber are very expensive compared to natural fibers. Natural fiber-reinforced thermosetting composites are more economized to produce than the original thermosetting. Moreover the use of natural fiber in thermosetting composites is highly beneficial, because the use of natural fibers will be increased. In this study, a bamboo fiber-reinforced thermoplastic composite that made the RTM was evaluated to mechanical properties.

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1356 ◽  
Author(s):  
Ulisses Oliveira Costa ◽  
Lucio Fabio Cassiano Nascimento ◽  
Julianna Magalhães Garcia ◽  
Sergio Neves Monteiro ◽  
Fernanda Santos da Luz ◽  
...  

Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant (Ananas erectifolius) is a promising strong candidate to replace synthetic fibers, such as aramid (Kevlar™), in multilayered armor system (MAS) intended for ballistic protection against level III high velocity ammunition. Another remarkable material, the graphene oxide is attracting considerable attention for its properties, especially as coating to improve the interfacial adhesion in polymer composites. Thus, the present work investigates the performance of graphene oxide coated curaua fiber (GOCF) reinforced epoxy composite, as a front ceramic MAS second layer in ballistic test against level III 7.62 mm ammunition. Not only GOCF composite with 30 vol% fibers attended the standard ballistic requirement with 27.4 ± 0.3 mm of indentation comparable performance to Kevlar™ 24 ± 7 mm with same thickness, but also remained intact, which was not the case of non-coated curaua fiber similar composite. Mechanisms of ceramic fragments capture, curaua fibrils separation, curaua fiber pullout, composite delamination, curaua fiber braking, and epoxy matrix rupture were for the first time discussed as a favorable combination in a MAS second layer to effectively dissipate the projectile impact energy.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


2014 ◽  
Vol 592-594 ◽  
pp. 1195-1199
Author(s):  
Ashwin Sailesh ◽  
C. Shanjeevi ◽  
J.Jeswin Arputhabalan

The developments in the field of composite materials are growing tremendously day by day. One such development is the use of natural fibers as reinforcement in the composite material. This is attributed to the fact that natural fibers are environmental friendly, economical, easily available and non-abrasive. Mixing of natural fiber with Glass Fibers is finding increased applications. In this present investigation Banana – Bamboo – Glass fiber reinforced natural fiber composites is fabricated by Hand – Layup technique with varying fiber orientation such as [0°G, 90°BM, 0°BN, 0°G], [0°G, 0°BM, +45°BN, 0°G] and [0°G, 0°BM, 90°BN, 0°G] and are tested for its tensile strength. The tensile strength of the fabricated composites is evaluated. The results indicated that the natural fiber composite with the fiber orientation of [0°G, 0°BM, 90°BN, 0°G] can withstand more load when compared to the samples with other fiber orientation. Nomenclature Used: BN – Banana fiber BM – Bamboo fiber G – Glass fiber


2018 ◽  
Vol 37 (24) ◽  
pp. 1435-1455 ◽  
Author(s):  
Mohammad ZR Khan ◽  
Sunil K Srivastava ◽  
MK Gupta

In recent years, researchers and scientists are facing problems in terms of environmental imbalance and global warming owing to numerous use of composite materials prepared by synthetic fibers and petrochemical polymers. Hence, an increasing attention has been devoted to the research and development of polymer composites reinforced with the natural fibers. The natural fibers are the most suitable alternative of synthetic fibers due to their biodegradability, eco-friendliness and acceptable mechanical properties. The natural fibers are attracting the researchers and scientists to exploit their properties by amalgamating them with the polymer. The properties of natural fiber reinforced polymer composites mainly depend upon various factors such as properties of fibers and matrices, fiber loading percentage, size and orientation of fibers, stacking sequences, degree of interfacial bonding, fiber surface treatments, hybridization and incorporation of additives and coupling agents. Tensile and flexural tests are the most important investigations to predict the applications of the materials. A good number of research has been carried out on tensile and flexural properties of natural fiber reinforced polymer composites. In this paper, a review on tensile and flexural properties of natural fiber reinforced polymer composites in terms of effects of fiber weight fraction, geometry, surface treatments, orientations and hybridization is presented. Moreover, recent applications of natural fiber reinforced polymer composites are also presented in this study.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2170
Author(s):  
N. M. Nurazzi ◽  
M. R. M. Asyraf ◽  
S. Fatimah Athiyah ◽  
S. S. Shazleen ◽  
S. Ayu Rafiqah ◽  
...  

In the field of hybrid natural fiber polymer composites, there has been a recent surge in research and innovation for structural applications. To expand the strengths and applications of this category of materials, significant effort was put into improving their mechanical properties. Hybridization is a designed technique for fiber-reinforced composite materials that involves combining two or more fibers of different groups within a single matrix to manipulate the desired properties. They may be made from a mix of natural and synthetic fibers, synthetic and synthetic fibers, or natural fiber and carbonaceous materials. Owing to their diverse properties, hybrid natural fiber composite materials are manufactured from a variety of materials, including rubber, elastomer, metal, ceramics, glasses, and plants, which come in composite, sandwich laminate, lattice, and segmented shapes. Hybrid composites have a wide range of uses, including in aerospace interiors, naval, civil building, industrial, and sporting goods. This study intends to provide a summary of the factors that contribute to natural fiber-reinforced polymer composites’ mechanical and structural failure as well as overview the details and developments that have been achieved with the composites.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3514
Author(s):  
M. J. Suriani ◽  
R. A. Ilyas ◽  
M. Y. M. Zuhri ◽  
A. Khalina ◽  
M. T. H. Sultan ◽  
...  

Increasing scientific interest has occurred concerning the utilization of natural fiber-enhanced hybrid composites that incorporate one or more types of natural enhancement. Annual natural fiber production is estimated to be 1,783,965 × 103 tons/year. Extensive studies have been conducted in the domains of natural/synthetic as well as natural/natural hybrid composites. As synthetic fibers have better rigidity and strength than natural fibers, natural/synthetic hybrid composites have superior qualities via hybridization compared to natural composites in fibers. In general, natural fiber compounds have lower characteristics, limiting the use of natural composites reinforced by fiber. Significant effort was spent in enhancing the mechanical characteristics of this group of materials to increase their strengths and applications, especially via the hybridization process, by manipulating the characteristics of fiber-reinforced composite materials. Current studies concentrate on enhancing the understanding of natural fiber-matrix adhesion, enhancing processing methods, and natural fiber compatibility. The optimal and resilient conceptions have also been addressed due to the inherently more significant variabilities. Moreover, much research has tackled natural fiber reinforced hybrid composite costs. In addition, this review article aims to offer a review of the variables that lead to the mechanical and structural failure of natural fiber reinforced polymer composites, as well as an overview of the details and costings of the composites.


2016 ◽  
Vol 36 (1) ◽  
pp. 87-95
Author(s):  
U Shehu ◽  
MT Isa ◽  
BO Aderemi ◽  
TK Bello

In order to improve properties of natural fibers as reinforcement, different treatment methods have being adopted by researchers. However, the use of sodium hydroxide (NaOH) for the treatment of baobab pod fiber as reinforcement in low density polyethylene is sparsely reported. Therefore, this study, investigated the effect of 2 wt%, 4 wt% 6 wt%, 8 wt% and 10 wt%  concentration of NaOH on baobab pod fibers as reinforcement for low density polyethylene (LDPE). Two roll mill machine and hydraulic press at a pressure of 10 kN and temperature of 120oC aided the production of the composite. FT-IR was used to analyze the functional groups of the treated and un-treated fibers. The result showed the disappearance of the peak 1550 cm-1 corresponding to lignin after modification. Further, the composites were characterized for the following tensile strength (TS), modulus of elasticity (MOE), elongation at break, impact strength and water absorption. Preliminary studies on the effect of loading of the unmodified baobab fiber in the LDPE matrix showed desirable properties at 10 wt%, where fiber content was in the range of 5 wt% to 30 wt% at interval of 5 wt%. The composite produced from the 8 wt% NaOH modified fiber had the highest tensile strength, MOE, elongation at break. At this modification level, the tensile strength, MOE and elongation at break were about 75.48%, 92.18% and 28% respectively higher than the composite produced from unmodified fiber. Composite produced with 10 wt% NaOH modified fiber exhibited least water absorption of 1.80%, which was 50% lower than unmodified. These showed that the modification of the fiber improved the composite properties. These properties compared favorably with some reported properties for natural fiber reinforced polymer composites. http://dx.doi.org/10.4314/njt.v36i1.12


2020 ◽  
pp. 073168442094077 ◽  
Author(s):  
Sonia S Raj Raj ◽  
J Edwin Raja Dhas ◽  
CP Jesuthanam

The emerging “green” economy is based on energy efficiency, renewable food stocks in polymeric products, industrial processes that reduce carbon emissions, and recyclable materials. Natural fiber is a type of renewable source and a new generation of reinforcements and integrators for polymer-based materials. Because of its advantages over synthetic fibers, the use of natural fibers as reinforcements in composite materials has become important in recent years. To meet certain design criteria, natural fiber-reinforced composites impose certain secondary operations during assembly. Limited literature is available only in connection with the processing of natural fiber-reinforced composites. This paper analyzes a comprehensive review of the natural fiber-reinforced composite processing literature along with the challenges during processing.


2016 ◽  
Vol 24 (7) ◽  
pp. 555-566 ◽  
Author(s):  
N. Venkatachalam ◽  
P. Navaneethakrishnan ◽  
R. Rajsekar ◽  
S. Shankar

India as a tropical agricultural country has great potential to develop and use fiber derived from agricultural waste. Natural fibers are an important by-product of extraction process and they can be used as reinforcement in composite products. Composites are developed with unsaturated polyester resin as the matrix with natural fiber as the reinforcement. The results show decreased strength and modulus with increasing the fiber volume fraction. This indicates ineffective stress transfer between the fiber and matrix due to lower adhesion. It is necessary to bring a hydrophobic nature to the fibers by suitable chemical treatments in order to develop composites with improved mechanical properties. In these review papers, different types of natural fibers are subjected to a variety of physical and chemical treatments. The types of treatments studied in these papers include Physical treatments such as beating and heating, and chemical treatments like alkalization, silane, acetylation and benzoylation. The effects of these treatments on mechanical properties of the composites are analyzed. Fractures are analyzed by using the scanning electron microscopy (SEM). Analysis by FTIR and DMA showed that physico-chemical changes of surfaces of treated natural fibers. In general, treatments to the fibers can significantly improve adhesion and reduce water absorption, thereby improving mechanical properties of the composites. The purpose of this review paper is to summarize the research work done on various pretreatments in the preparation of natural fiber reinforced composites and to highlight the potential use of natural fiber reinforced polymer composites in industry and its potential to replace the synthetic fiber composite and conventional materials in the future.


Author(s):  
Muhamad Fitri ◽  
S. Mahzan ◽  
Fajar Anggara

Indonesia has a large variety of natural fibers in abundance. Some of natural fibers become organic waste if not used for something needed by humans. One of the potential uses of natural fiber composite materials is to be used in automotive components. But before natural fiber composites are used in automotive components, it is necessary to examine first what are the requirements for mechanical properties or other properties required by the automotive components. Especially the automotive components which have been made from Polymers, like  dash board, Car interior walls, front and rear bumper and Car body, etc. Each of these automotive components has different function and condition, and that caused different mechanical properties needed. The purpose of this study is collecting the data from the literature, related to the properties needed for these automotive components. This study was conducted by studying the literature of research journals in the last 10 years. From the research journals, data on the requirements of mechanical properties for automotive components will be collected. Furthermore, the data of mechanical properties required for automotive components can be used as a reference to determine the reliability of automotive components made from composite


Sign in / Sign up

Export Citation Format

Share Document