Clostridium difficile ribotype 078 cultured from post-surgical non-healing wound in a patient carrying ribotype 014 in the intestinal tract

2015 ◽  
Vol 60 (6) ◽  
pp. 541-544 ◽  
Author(s):  
Otakar Nyc ◽  
Marcela Krutova ◽  
Jiri Kriz ◽  
Jana Matejkova ◽  
Eliska Bebrova ◽  
...  
2013 ◽  
Vol 79 (8) ◽  
pp. 2630-2635 ◽  
Author(s):  
Daniel R. Knight ◽  
Sara Thean ◽  
Papanin Putsathit ◽  
Stan Fenwick ◽  
Thomas V. Riley

ABSTRACTRecent reports in North America and Europe ofClostridium difficilebeing isolated from livestock and retail meats of bovine origin have raised concerns about the risk to public health. To assess the situation in Australia, we investigated the prevalence and genetic diversity ofC. difficilein adult cattle and calves at slaughter. Carcass washings, gastrointestinal contents, and feces were collected from abattoirs across five Australian states. Selective culture, toxin profiling, and PCR ribotyping were performed. The prevalence ofC. difficilewas 56% (203/360 samples) in feces from <7-day-old calves, 3.8% (1/26) in 2- to 6-month-old calves, and 1.8% (5/280) in adult cattle. Three PCR ribotypes (RTs), RT127, RT033, and RT126, predominated in <7-day-old calves and comprised 77.8% (158/203 samples) of isolates. RT056, which has not been reported in cattle before, was found in 16 <7-day-old calves (7.7%). Surprisingly, RT078 strains, which dominate production animal carriage studies in the Northern Hemisphere, were not isolated.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Kate E. Dingle ◽  
Xavier Didelot ◽  
T. Phuong Quan ◽  
David W. Eyre ◽  
Nicole Stoesser ◽  
...  

ABSTRACT The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM. Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli. Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen. IMPORTANCE Clostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.


2019 ◽  
Vol 7 (12) ◽  
pp. 667 ◽  
Author(s):  
Melina Kachrimanidou ◽  
Eleni Tzika ◽  
George Filioussis

Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.


2013 ◽  
Vol 62 (9) ◽  
pp. 1405-1413 ◽  
Author(s):  
P. Moore ◽  
L. Kyne ◽  
A. Martin ◽  
K. Solomon

Spore germination is an important part of the pathogenesis of Clostridium difficile infection (CDI). Spores are resistant to antibiotics, including those therapeutically administered for CDI and strains with a high germination rate are significantly more likely to be implicated in recurrent CDI. The role of germination efficiency in cases of refractory CDI where first-line therapy fails remains unclear. We investigated spore germination efficiencies of clinical C. difficile isolates by measuring drop in OD600 and colony forming efficiency. Ribotype 027 isolates exhibited significantly higher germination efficiencies in the presence of 0.1 % (w/v) sodium taurocholate (51.66±8.75 %; 95 % confidence interval (CI) 47.37–55.95 %) than ribotype 106 (41.91±8.35 %; 95 % CI 37.82–46 %) (P<0.05) and ribotype 078 (42.07±8.57 %, 95 % CI 37.22–46.92 %) (P<0.05). Spore outgrowth rates were comparable between the ribotype groups but the exponential phase occurred approximately 4 h later in the absence of sodium taurocholate. Spore germination efficiencies for isolates implicated in severe CDI were significantly higher (49.68±10.00 %, 95 % CI 47.06–52.30 %) than non-severe CDI (40.92±9.29 %, 95 % CI 37.48–44.36 %); P<0.01. Germination efficiencies were also significantly higher in recurrent CDI or when metronidazole therapy failed than when therapy was successful [(49.00±10.49 %, 95 % CI 46.25–51.75 %) versus (41.42±9.43 %, 95 % CI 37.93–44.91 %); P<0.01]. This study suggests an important link between C. difficile spore germination, CDI pathogenesis and response to treatment; however, further work is warranted before the complex interplay between germination dynamics and CDI outcome can be fully understood.


2011 ◽  
Vol 74 (10) ◽  
pp. 1618-1624 ◽  
Author(s):  
ALEXANDER RODRIGUEZ-PALACIOS ◽  
MOHAMMAD KOOHMARAIE ◽  
JEFFREY T. LeJEUNE

To assess the potential for food contamination with Clostridium difficile from food animals, we conducted a cross-sectional fecal prevalence study in 944 randomly selected cattle harvested at seven commercial meat processing plants, representing four distant regions (median distance of 1,500 km) of the United States. In all, 944 animals were sampled in the summer of 2008. C. difficile was isolated from 1.8% (17 of 944) of cattle, with median fecal shedding concentration of 2.2 log CFU/g (range = 1.6 to 4.8, 95% confidence interval = 1.6, 4.3). Toxigenic C. difficile isolates were recovered from only four (0.4%) cattle. One of these isolates was emerging PCR ribotype 078/toxinotype V. The remaining toxigenic isolates were toxinotype 0, one of which was an isolate with resistance to linezolid, clindamycin, and moxifloxacin (by the E-test). All isolates were susceptible to vancomycin, metronidazole, and tigecycline, but the MICs against linezolid were as high as the highest reported values for human-derived isolates. The source of the linezolid-clindamycin-moxifloxacin resistance in a toxigenic C. difficile isolate from cattle is uncertain. However, since the use of these three antimicrobial agents in cattle is not allowed in North America, it is possible that resistance originated from an environmental source, from other species where those antimicrobial agents are used, or transferred from other intestinal bacteria. This study confirms that commercial cattle can carry epidemiologically relevant C. difficile strains at the time of harvest, but the prevalence at the time they enter the food chain is low.


2012 ◽  
Vol 78 (12) ◽  
pp. 4183-4186 ◽  
Author(s):  
Scott R. Curry ◽  
Jane W. Marsh ◽  
Jessica L. Schlackman ◽  
Lee H. Harrison

ABSTRACTThe prevalence ofClostridium difficilein retail meat samples has varied widely. The food supply may be a source forC. difficileinfections. A total of 102 ground meat and sausage samples from 3 grocers in Pittsburgh, PA, were cultured forC. difficile. Brand A pork sausages were resampled between May 2011 and January 2012. Two out of 102 (2.0%) meat products initially sampled were positive forC. difficile; both were pork sausage from brand A from the same processing facility (facility A). On subsequent sampling of brand A products, 10/19 samples from processing facility A and 1/10 samples from 3 other facilities were positive forC. difficile. The isolates recovered were inferred ribotype 078, comprising 6 genotypes. The prevalence ofC. difficilein retail meat may not be as high as previously reported in North America. When contamination occurs, it may be related to events at processing facilities.


2014 ◽  
Vol 169 (3-4) ◽  
pp. 218-222 ◽  
Author(s):  
Sergio Álvarez-Pérez ◽  
José L. Blanco ◽  
Eva Martínez-Nevado ◽  
Teresa Peláez ◽  
Celine Harmanus ◽  
...  

2010 ◽  
Vol 59 (5) ◽  
pp. 556-562 ◽  
Author(s):  
Haru Kato ◽  
Hideaki Kato ◽  
Yoichiro Ito ◽  
Takayuki Akahane ◽  
Sayuri Izumida ◽  
...  

A typing system for Clostridium difficile using sequencing of the surface-layer protein A encoding gene (slpA) was evaluated and used to analyse clinical isolates in Japan. A total of 160 stool specimens from symptomatic patients in Japan was examined and 87 C. difficile isolates were recovered. slpA sequence typing was found to have reliable typability and discriminatory power in comparison with PCR ribotyping, and the typing results were highly reproducible and comparable. slpA sequence typing was used to type C. difficile in DNA extracted directly from stool specimens. Among the 90 stool specimens in which direct typing results were obtained, 77 specimens were positive for C. difficile culture, and typing results from isolated strains agreed with those from direct typing in all 77 specimens. The slpA sequence type smz was dominant at all four hospitals examined, and this endemic type was detected by culture and/or direct typing in 61 (62 %) of 99 stool specimens positive for toxic culture and/or direct slpA sequence typing. Comparison of epidemic strains reported throughout the world revealed one isolate identified as slpA sequence type gc8, which was found to correspond to PCR ribotype 027 (BI/NAP1/027), whereas no isolates were found with the slpA gene identical to that of PCR ribotype 078 strain. slpA sequence typing is valuable for comparison of C. difficile strains epidemic in diverse areas because the typing results are reproducible and can easily be shared. In addition, slpA sequence typing could be applied to direct typing without culture.


2018 ◽  
Vol 4 (1) ◽  
pp. 7 ◽  
Author(s):  
Deirdre Collins ◽  
Thomas Riley

Clostridium difficile is a ubiquitous spore-forming bacterium which causes toxin-mediated diarrhoea and colitis in people whose gut microflora has been depleted by antimicrobial use, so it is a predominantly healthcare-associated disease. However, there are many One Health implications to C. difficile, given high colonisation rates in food production animals, contamination of outdoor environments by use of contaminated animal manure, increasing incidence of community-associated C. difficile infection (CDI), and demonstration of clonal groups of C. difficile shared between human clinical cases and food animals. In Asia, the epidemiology of CDI is not well understood given poor testing practices in many countries. The growing middle-class populations of Asia are presenting increasing demands for meat, thus production farming, particularly of pigs, chicken and cattle, is rapidly expanding in Asian countries. Few reports on C. difficile colonisation among production animals in Asia exist, but those that do show high prevalence rates, and possible importation of European strains of C. difficile like ribotype 078. This review summarises our current understanding of the One Health aspects of the epidemiology of CDI in Asia.


2014 ◽  
Vol 58 (8) ◽  
pp. 4535-4542 ◽  
Author(s):  
Usha Stiefel ◽  
Michelle M. Nerandzic ◽  
Michael J. Pultz ◽  
Curtis J. Donskey

ABSTRACTAntibiotics that are excreted into the intestinal tract may disrupt the indigenous intestinal microbiota and promote colonization by health care-associated pathogens. β-Lactam, or penicillin-type, antibiotics are among the most widely utilized antibiotics worldwide and may also adversely affect the microbiota. Many bacteria are capable, however, of producing β-lactamase enzymes that inactivate β-lactam antibiotics. We hypothesized that prior establishment of intestinal colonization with a β-lactamase-producing anaerobe might prevent these adverse effects of β-lactam antibiotics, by inactivating the portion of antibiotic that is excreted into the intestinal tract. Here, mice with a previously abolished microbiota received either oral normal saline or an oral cephalosporinase-producing strain ofBacteroides thetaiotaomicronfor 3 days. Mice then received 3 days of subcutaneous ceftriaxone, followed by either oral administration of vancomycin-resistantEnterococcus(VRE) or sacrifice and assessment ofin vitrogrowth of epidemic and nonepidemic strains ofClostridium difficilein murine cecal contents. Stool concentrations of VRE and ceftriaxone were measured, cecal levels ofC. difficile24 h after incubation were quantified, and denaturing gradient gel electrophoresis (DGGE) of microbial 16S rRNA genes was performed to evaluate the antibiotic effect on the microbiota. The results demonstrated that establishment of prior colonization with a β-lactamase-producing intestinal anaerobe inactivated intraintestinal ceftriaxone during treatment with this antibiotic, allowed recovery of the normal microbiota despite systemic ceftriaxone, and prevented overgrowth with VRE and epidemic and nonepidemic strains ofC. difficilein mice. These findings describe a novel probiotic strategy to potentially prevent pathogen colonization in hospitalized patients.


Sign in / Sign up

Export Citation Format

Share Document