scholarly journals Review of flywheel based internal combustion engine hybrid vehicles

2013 ◽  
Vol 14 (5) ◽  
pp. 797-804 ◽  
Author(s):  
A. Dhand ◽  
K. Pullen
2020 ◽  
Vol 10 (5) ◽  
pp. 1712 ◽  
Author(s):  
Hsiu-Ying Hwang ◽  
Tian-Syung Lan ◽  
Jia-Shiun Chen

In order to achieve better performance of fuel consumption in hybrid vehicles, the internal combustion engine is controlled to operate under a better efficient zone and often turned off and on during driving. However, while starting or shifting the driving mode, the instantaneous large torque from the engine or electric motor may occur, which can easily lead to a high vibration of the elastomer on the driveline. This results in decreased comfort. A two-mode power-split hybrid system model with elastomers was established with MATLAB/Simulink. Vibration reduction control strategies, Pause Cancelation strategy (PC), and PID control were developed in this research. When the system detected a large instantaneous torque output on the internal combustion engine or driveline, the electric motor provided corresponding torque to adjust the torque transmitted to the shaft mitigating the vibration. To the research results, in the two-mode power-split hybrid system, PC was able to mitigate the vibration of the engine damper by about 60%. However, the mitigation effect of PID and PC-PID was better than PC, and the vibration was able to converge faster when the instantaneous large torque input was made. In the frequency response, the effect of the PID blocking vibration source came from the elastomer was about 75%, while PC-PID additionally reduced 8% by combining the characteristics of the two control methods.


2020 ◽  
Vol 19 (1) ◽  
pp. 20-33
Author(s):  
W. U. Maddumage ◽  
K. Y. Abeyasighe ◽  
M. S. M. Perera ◽  
R. A. Attalage ◽  
P. Kelly

Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study.


2019 ◽  
Vol 118 ◽  
pp. 02010 ◽  
Author(s):  
Ningning Ha

In China, the growth of new energy vehicles is especially rapid and the explosive growth of the automobile brought an increasing impact on the environment. This paper selected Electric Vehicles, Hybrid Vehicles and Internal Combustion Engine Vehicles of the same model of BYD as the object. We established a Life Cycle Assessment with GaBi6 software and CML2001 model. The results show that in the whole life cycle, the influences of ADP, GWP and ODP of Electric Vehicles are less than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. The impact of Electric Vehicles are 39%, 50%, and 4% of the Internal Combustion Engine Vehicles and the Hybrid Vehicles’ impact are 65%, 78% and 85% of the Internal Combustion Engine Vehicles. Electric Vehicles and Hybrid Vehicles have a clear improvement in these three types of impacts. The comparison results of AP, EP, FAETP, MAETP and POCP show that the potential impact of Electric Vehicles is greater than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. At present, improving production technology and reducing the consumption of energy during production phase are effective measures to reduce the environmental impact of Internal Combustion Engine Vehicles and Hybrid Vehicles of China.


Author(s):  
R. L. Evans

Global warming has been identified as one of the most important problems facing mankind in the 21st century. Currently, some 6 gigatonnes of CO2 are emitted each year as a result of the combustion of fossil fuels, and a large fraction of these emissions originate from the transportation sector. By examining the complete energy conversion chain, the choice of primary energy source for any particular application becomes easier to understand. A discussion of alternatives to the internal combustion engine as the sole power source for vehicular propulsion is presented, and some form of hybrid electric vehicle propulsion system is identified as being a likely choice to reduce fossil fuel consumption, and therefore CO2 emissions from the transportation sector. The demonstrated market success of grid-independent hybrid vehicles may be followed by a new design of “plug-in hybrid” vehicles in which it is possible to travel for up to 100 km in an all-electric mode, while maintaining the option of using an internal combustion engine when greater range between charging cycles is required.


Author(s):  
Davide Tarsitano ◽  
Laura Mazzola ◽  
Federico Cheli ◽  
Ferdinando Mapelli

The use of road vehicles has always represented a major contribution to the growth of modern society: it facilitates goods and people mobility, meeting most of the daily needs and it represents a backbone for the development of world economy, (i.e. the industrial field). Nowadays, this mean of transportation, however, given the high number of vehicles on the roads, has a negative impact both on the environment and on the quality of human life. Moreover it leads to an increase in additional costs (i.e. the costs related to environment pollution, global warming and depletion of resources). Such a negative aspect is due to the fact that the drive systems are often characterized by high variability of the load, hence the propulsion system works in areas with low efficiencies and high pollutant emissions. In order to overcome these problems, and to allow the compliance of the road transport system with new European guidelines (i.e White paper, and Horizon 2020), it is necessary to develop innovative technologies able to: - increase the overall powertrain efficiency; - introduce a sustainable alternative fuels strategy including also the appropriate infrastructure; - reduce carbon emission through a decarbonisation approach; In this perspective, in recent years, the technology of electric and hybrid vehicles has been developed, and nowadays it has become a feasible solution in the context of means of transportation. Car/truck-makers and operators look at further developments and innovation in this field in order to optimise the existing solutions and reduce the production costs. The current solution for hybrid vehicles aims to couple a conventional engine with an electrical motor; these two propulsion system are coordinated by an opportune algorithm in order to let the conventional engine operate in its higher efficiency range. Hence the technology foresees the action of endothermic and electrical motors. It is then pivotal for the success of this transport the optimisation of the whole system (electrical and endothermic) in terms of efficiency, sizing and of the control algorithm that coordinate the two propulsion systems. For the modeling of the internal combustion engine conventional approaches, based on the numerical simulation of the combustion process, cannot be used because of their complexity in term of time needed for computing activity. For hybrid power train the general approach to simulated a drive cycle, that usually last at least a few minutes, is based on engine map approach [1–2]. The main burden to the described process is the identifications of maps of torque and consumption for the internal combustion engine, which are normally not predictable in detail, nor are provided by the manufacturers, but they can only be determined by means of experimental tests. Such a process can become extremely expensive and time consuming. Hence in this work the concept of virtual optimisation is introduced basing on the identification of torque and fuel consumption maps for internal combustion engines on analytical methods considering the similarities with engine of the same class. In this regard, a model of the system is developed based on the “Willans Line Method” approach, subsequently to a theoretical definition of the model, the identification of maps is carried out for two different engines (one diesel heavy-duty engine and one spark ignition engine) in order to consider the existing configurations of hybrid vehicles. Eventually the calculated maps are validated considering experimental data from existing experimental campaign. Providing the validity of the method and its usefulness in the hybrid vehicle design.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document