Experimental Study on the Spray Characteristics of Ethanol Gasoline Blended Fuel in a Direct Injection System

2020 ◽  
Vol 21 (3) ◽  
pp. 555-561
Author(s):  
Youngkun Kim ◽  
WoongIl Kim ◽  
Seungju Baek ◽  
Kihyung Lee
Fuel ◽  
2012 ◽  
Vol 97 ◽  
pp. 390-399 ◽  
Author(s):  
Raul Payri ◽  
Antonio García ◽  
Vicent Domenech ◽  
Russell Durrett ◽  
Alejandro H. Plazas

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Chetankumar Patel ◽  
Joonsik Hwang ◽  
Choongsik Bae ◽  
Rashmi A. Agarwal ◽  
Avinash Kumar Agarwal

Abstract This study aims to assess the microscopic characteristics of Jatropha, Karanja, and Waste cooking oil-based biodiesels vis-a-vis conventional diesel under different ambient conditions in order to understand the in-cylinder processes, while using biodiesels produced from different feedstocks in the compression ignition engines. All test-fuels were injected in ambient atmosphere using a common-rail direct injection (CRDI) fuel injection system at a fuel injection pressure (FIP) of 40 MPa. Microscopic spray characteristics were measured using phase Doppler interferometer (PDI) in the axial direction of the spray at a distance of 60–90 mm downstream of the nozzle and at 0 to 3-mm distance from the central axis in the radial direction. All biodiesels exhibited relatively larger Sauter mean diameter (SMD) of the spray droplets and higher droplet velocities compared to baseline mineral diesel, possibly due to relatively higher fuel viscosity and surface tension of biodiesels. It was also observed that SMD of the spray droplets decreased with increasing distance in the radial and axial directions and the same trend was observed for all test-fuels.


2014 ◽  
Vol 984-985 ◽  
pp. 932-937 ◽  
Author(s):  
Palani Raghu ◽  
M. Senthamil Selvan ◽  
K. Pitchandi ◽  
N. Nallusamy

— The spray characteristic of the injected fuel is mainly depends upon fuel injection pressure, temperature, ambient pressure, fuel viscosity and fuel density. An experimental study was conducted to examine the effect of injection pressure on the spray was injected into direct injection (DI) diesel engine in the atmospheric condition. In Diesel engine, the window of 20 mm diameter hole and the transparent quartz glass materials were used for visualizing spray characteristics of combustion chamber at right angle triangle position. The varying Injection pressure of 180 - 240 bar and the engine was hand cranked for conducting the experiments. Spray characteristics for Jatropha oil methyl ester (JOME) and diesel were studied experimentally. Spray tip penetration and spray cone angle were measured in a combustion chamber of Direct Injection diesel engine by employing high speed Digital camera using Mie Scattering Technique and ImageJ software. The study shows the JOME gives longer spray tip penetration and smaller spray cone angle than those of diesel fuels. The Spray breakup region (Reynolds number, Weber number), Injection velocity and Sauter Mean Diameter (SMD) were determined for diesel and JOME. SMD decreases for JOME than diesel and the Injection velocity, Reynolds Number, Weber Number Increases for JOME than diesel.


Author(s):  
Valentin Soloiu ◽  
Yoshinobu Yoshihara ◽  
Kazuie Nishiwaki ◽  
Yasufumi Nakanishi

The authors investigated the formulation, combustion and emissions of polypropylene (PP)–diesel fuel mixtures in a direct injection diesel engine. The fuel has been obtained by an original technology they developed, in which the low or high density polypropylene (LDPP, HDPP), have been mixed in a nitrogen atmosphere at 200 °C, 10–40% by wt. in diesel fuel. The kinematic viscosity of the polypropylene-diesel fuels was investigated between 25–250 °C and the results showed that viscosity of the plastic mixtures is much higher than that of diesel alone, ranging from 10 cSt to 500 cSt, and depending on the plastic structure, content, and temperature. The TGA and DTA analysis has been conducted to investigate the oxidation and combustion properties of pure PP and polymerdiesel fuels. The results showed that at about 125 °C, the LDPP melts, but does not decompose up 240 °C, when the oxidation starts, and has a peak of heat release at 340–350 °C, and the process is completed at 400 °C. The engine’s injection system used, was a piston-barrel type pump, capable of an injection pressure of 200 bars. The injector had 4 × 0.200 mm nozzles with a conical tip needle. The 25% PP-diesel mixture had a successful ignition in a direct injection 110 mm bore, omega combustion chamber engine. The ignition delay for polypropylene-diesel mixtures was longer by about 0.5 ms (at 1200 rpm), compared with diesel. The heat release showed a different development compared with the reference diesel fuel, the premixed phase being inhibited while a slow diffusion combustion phase fully developed. The maximum combustion pressure has been 83 bars for diesel and decreased by 2 bars for the blended fuel, while the bulk gas maximum temperature (calculated) reached about 2500 K for diesel vs 2600 K for polypropylene mixture. The heat flux calculated by the Annand model has shown lower values for diesel fuel with a maximum of about 2.7 MW/m2 compared with 3.0 MW/m2 for PP blended fuel with similar values for convection flux for both fuels at about 1.57 MW/m2 and a higher radiation flux of about 1.44 MW/m2 for PP fuel versus 1.27 MW/m2 for diesel. The heat lost during the cycle shows low values for the premixed combustion stage and increased values for the diffusion stage for both fuels. The exhaust temperatures have been practically identical for both fuels for all loads, with emissions of NOx, and CO reduced by 40% for the alternative fuel, while the CO2 exhibited almost the same values for both fuels. The smoke emissions decreased by 60–90% for the polypropylene blended fuel depending on the load, The engines’ overall efficiency was slightly lower for PP fuel at low loads compared with diesel combustion but at 100% load both reached 36%. The study showed that the new formulation process proposed by the authors is able to produce a new class of fuels from diesel blended with low density polypropylene, and resulted in hybrid fuels with very promising combustion prospects. The engine investigation proved that 25% PP fuels can be injected and burnt in a diesel engine at a residence time of about 5 ms from the start of injection, and the engine’s nominal power could be reached, with lower emissions than reference diesel fuel.


2017 ◽  
Vol 24 (1) ◽  
pp. 237-248
Author(s):  
Amirreza Ghahremani ◽  
Mojtaba Jafari ◽  
Mohammad Ahari ◽  
Mohammad Hassan Saidi ◽  
Ahmad Hajinezhad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document