scholarly journals Experimental and theoretical investigation on spray characteristics of bio-ethanol blends using a direct injection system

2017 ◽  
Vol 24 (1) ◽  
pp. 237-248
Author(s):  
Amirreza Ghahremani ◽  
Mojtaba Jafari ◽  
Mohammad Ahari ◽  
Mohammad Hassan Saidi ◽  
Ahmad Hajinezhad ◽  
...  
2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Chetankumar Patel ◽  
Joonsik Hwang ◽  
Choongsik Bae ◽  
Rashmi A. Agarwal ◽  
Avinash Kumar Agarwal

Abstract This study aims to assess the microscopic characteristics of Jatropha, Karanja, and Waste cooking oil-based biodiesels vis-a-vis conventional diesel under different ambient conditions in order to understand the in-cylinder processes, while using biodiesels produced from different feedstocks in the compression ignition engines. All test-fuels were injected in ambient atmosphere using a common-rail direct injection (CRDI) fuel injection system at a fuel injection pressure (FIP) of 40 MPa. Microscopic spray characteristics were measured using phase Doppler interferometer (PDI) in the axial direction of the spray at a distance of 60–90 mm downstream of the nozzle and at 0 to 3-mm distance from the central axis in the radial direction. All biodiesels exhibited relatively larger Sauter mean diameter (SMD) of the spray droplets and higher droplet velocities compared to baseline mineral diesel, possibly due to relatively higher fuel viscosity and surface tension of biodiesels. It was also observed that SMD of the spray droplets decreased with increasing distance in the radial and axial directions and the same trend was observed for all test-fuels.


1996 ◽  
Vol 6 (1) ◽  
pp. 95-109 ◽  
Author(s):  
H. C. Yang ◽  
Hong Sun Ryou ◽  
Y. T. Jeong ◽  
Young Ki Choi

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.


2014 ◽  
Vol 532 ◽  
pp. 362-366 ◽  
Author(s):  
Jiang Feng Mou ◽  
Rui Qing Chen ◽  
Yi Wei Lu

This paper studies the lean burn limit characteristic of the compound injection system of the direct-injection gasoline engine. The low pressure nozzle on the intake manifold can achieve quality homogeneous lean mixture, and the direct injection in the cylinder can realized the dense mixture gas near the spark plug. By adjusting the two injection timing and injection quantity, and a strong intake tumble flow with special shaped combustion chamber, it can produces the reverse tumble to form different hierarchical levels of mixed gas in the cylinder. Experimental results show: the compound combustion system to the original direct-injection engine lean burn limit raise 1.8-2.5 AFR unit.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Sign in / Sign up

Export Citation Format

Share Document