Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis

2018 ◽  
Vol 41 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Aditi Wagle ◽  
Su Hui Seong ◽  
Bing Tian Zhao ◽  
Mi Hee Woo ◽  
Hyun Ah Jung ◽  
...  
2019 ◽  
Vol 86 ◽  
pp. 296-304 ◽  
Author(s):  
Suat Sari ◽  
Burak Barut ◽  
Arzu Özel ◽  
Ayşe Kuruüzüm-Uz ◽  
Didem Şöhretoğlu

2019 ◽  
Vol 27 (6) ◽  
pp. 1009-1022 ◽  
Author(s):  
Arshia ◽  
Farida Begum ◽  
Noor Barak Almandil ◽  
Muhammad Arif Lodhi ◽  
Khalid Mohammed Khan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Laconi ◽  
Andrea Fortin ◽  
Giulia Bedendo ◽  
Akihiro Shibata ◽  
Yoshihiro Sakoda ◽  
...  

2015 ◽  
Vol 25 (4) ◽  
pp. 382-386 ◽  
Author(s):  
Carolina dos Santos Passos ◽  
Luiz Carlos Klein-Júnior ◽  
Juliana Maria de Mello Andrade ◽  
Cristiane Matté ◽  
Amélia Teresinha Henriques

2020 ◽  
Vol 16 (4) ◽  
pp. 365-375
Author(s):  
Sadia Sarwar ◽  
Tauqeer Amed ◽  
Neelum Gul Qazi ◽  
Jun Qing Yu ◽  
Fazlul Huq

Background: Identification and development of new drug candidates to be used singly or in combination therapy is critical in anticancer research. In recent years, accumulating evidence encouraged us to investigate the anti-proliferative effects of a small and emerging phytochemical Wedelolactone (WDL) in estrogen-dependent and independent multiple gynecological tumor models. Objective: The aim of this study was to investigate the growth inhibitory effect of WDL on estrogen- dependent and independent gynecological cell lines and to explore its inhibitory potential towards key targets through in silico study. Methods: Cytotoxicity of WDL was investigated in human breast and ovarian cancer cell lines (MCF-7 and SKOV3) through 3-(4,5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. Epigallocatechingallate (EGCG) was used as reference natural compound while cisplatin was taken as a standard clinical agent. Both WDL and EGCG in combination with cisplatin were also evaluated for their combined growth inhibitory potential in MCF-7 cells. WDL was also evaluated in silico against key factors including braf kinases, CDPK, ERα, aromatase, topoisomerase II and dihydrofolate reductase (DHFR) playing pivotal roles in driving multiple tumors. Results and Discussion: The IC50 value of WDL was 25.77 ± 4.82 μM and 33.64 ± 1.45 μM in MCF-7 and SKOV-3 respectively. The binding energy order was as follows; WDL: DHFR >Braf kinases > CDPK; aromatase > topoisomerase II> ERα > NFkB > alkaline phosphatase; EGCG dihydrofolatereductase (DHFR) > aromatase >CDPK > topoisomerase II > braf kinases > alkaline phosphatase > CDPK > ERα > NFkB. Conclusion: We identified WDL as a cytotoxic agent in breast and ovarian tumor models with the potential to inhibit multiple targets in the oncogenic pathway including estrogen receptor ERα, as depicted through its in silico study. Based on our own research findings and from literature evidence, we conclude that further research should be encouraged to investigate different aspects of wedelolactone as an additional agent to be combined with antiestrogen/endocrine therapy.


Author(s):  
Kai-Xia Zhang ◽  
Peng-Ru Wang ◽  
Fei Chen ◽  
Xi-Jing Qian ◽  
Lin Jia ◽  
...  

Background: Licorice is widely used as a hepatoprotective herb for thousands of years in Traditional Chinese Medicine, and its main chemical constituent glycyrrhizin (GL) is used as a treatment for chronic hepatitis in Japan for over 20 years. 18β-Glycyrrhetinic acid (GA) is the main active metabolite of GL. Objective: Series of GA derivatives were designed and synthesized, and their anti-HCV activities were screened to investigate structure-activity relationship (SAR). Besides, their in-silico ADMET properties were analyzed to search for promising lead compound for further identification of anti-HCV terpenoid candidate. Methods: GA derivatives were synthesized via reactions of oxidation, oxime, rearrangement, esterification and acylation, etc. In vitro anti-HCV activity of derivatives was tested on the HCV cell culture (HCVcc) system. In-silico ADMET properties analysis were performed via “pkCSM” and “SwissADME” platforms. Results: Eighteen GA derivatives were synthesized and their structures were confirmed by MS and NMR spectrums. All compounds exhibited superior HCV inhibitory activity to that of GA. Compound 2 possessed the most potent anti-HCV activity with IC50 value of 0.79 μM, which is nearly 58 times potent than SA (a previously reported potent anti-HCV terpenoids) and >200 times than GA. SAR revealed the introduction of 3-oxo, short-chain (C1-C3) aliphatic alcohols or cyclic aliphatic amines is conducive to improving anti-HCV activity. In-silico ADMET prediction demonstrated most of the potent compounds possessed favorable ADMET properties. Conclusion: Structural modification of GA at 3-position and 30-position is an effective approach to searching for potent anti-HCV agents. Compound 2, with the most potent anti-HCV activity and favorable in-silico ADMET properties, is a promising lead compound for further identification of anti-HCV terpenoid candidate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fadia S. Youssef ◽  
Ahmed E. Altyar ◽  
Abdelsattar M. Omar ◽  
Mohamed L. Ashour

Phytochemical investigation of Buddleja indica Lam. leaves methanol extract (BIT) resulted in the isolation of six known compounds for the first time from the plant, namely, p-hydroxybenzoic acid 1), caffeic acid 2), quercetin 3-O-β-D glucoside-7-O-α-L-rhamnoside 3), kaempferol 3-O-β-D glucoside-7-O-α-L-rhamnoside 4), quercetin 7-O-β-D glucoside 5) and kaempferol 6). BIT extract showed potent antibacterial activity with MIC values ranging between 0.48 and 1.95 μg/ml with Bacillus subtilis was the most susceptible to the BIT effect. It showed a notable antimycobacterial and anti-Helicobacter pylori activity with MIC values of 100 and 80 μg/ml, respectively. Vesicular stomatitis virus (VSV) was more sensitive to the antiviral activity of BIT comparable to herpes simplex virus type 1 (HSV-1), showing 48.38 and 41.85% inhibition of the viral replication at a dose of 50 μg/ml for VSV and HSV-1, respectively. In silico molecular docking of the isolated compounds revealed that caffeic acid 2) showed the highest fitting within the active sites of DNA-gyrase, topoisomerase IV, and SARS-CoV-2 MPro. Quercetin 7-O-β-D glucoside 5) revealed the best fitting in dihydrofolate reductase active site with ∆ G value equals −36.53 Kcal/mol. Kaempferol 6) exhibited the highest fitting towards β-lactamase, SARS-CoV-2PLpro, and SARS-CoV-2 3CLpro active sites. Thus, B. indica Lam. can be considered as a future source of cheap, substantially safe, and credible antibacterial, antifungal, and antiviral candidate of natural origin that could effectively participate in solving the problem of COVID-19 pandemic. These findings provide a scientific consolidation for the ethnomedicinal uses of Buddleja indica Lam. as a topical antiseptic.


Author(s):  
Raúl Eduardo Rivera-Quiroga ◽  
Nestor Cardona ◽  
Leonardo Padilla ◽  
Wbeimar Rivera ◽  
Cristian Rocha ◽  
...  

Streptococcus mutans is well known for having virulence factors associated with its cariogenic role, such as glucosyltransferases, which have been used as targets for the virtual screening of molecules with inhibitory capacity. The Antigen I/II of S. mutans is involved in the adhesion to the surface of the tooth and the bacterial co-aggregation in the biofilm formation, despite that, this protein has not been used as a target in a virtual strategy search for inhibitors. In this study we identified in silico and evaluated in vitro molecules with adhesion inhibitory potential on S. mutans Ag I/II. A virtual screening of 883,551 molecules was conducted, cytotoxicity analysis on fibroblast cells, S. mutans adhesion studies, scanning electron microscopy analysis for bacterial integrity, and molecular dynamics simulation were also performed. We have found three molecules (ZI-187, ZI-939, ZI-906) that were not cytotoxic and inhibited the adhesion of S. mutans to polystyrene microplates. Molecular dynamic simulation by 300 nanoseconds showed stability of the interaction between ZI-187 and Ag I/II (PDB: 3IPK). This work provides three new molecules that targets Ag I/II and have the capacity to inhibit in vitro the S. mutans adhesion on polystyrene microplates and provides a new computational line for the search and selection of safe inhibitory molecules against different pathogens.


Sign in / Sign up

Export Citation Format

Share Document