Control of indoor thermal environment based on concept of contribution ratio of indoor climate

2010 ◽  
Vol 3 (4) ◽  
pp. 263-278 ◽  
Author(s):  
Taro Sasamoto ◽  
Shinsuke Kato ◽  
Weirong Zhang
2019 ◽  
Vol 111 ◽  
pp. 01042
Author(s):  
Matteo Bilardo ◽  
Lorenzo Comba ◽  
Paolo Cornale ◽  
Andrea Costantino ◽  
Enrico Fabrizio

Climate control is of the foremost importance in structures for intensive animal rearing because many animals (e.g. pigs and broilers) tolerate a small range of climate conditions (mainly air temperature and relative humidity) that may differ considerably from the outdoor environment. For this reason, the indoor climate in the majority of structures for animal husbandry is guaranteed by HVAC systems. On the one hand, the use of mechanical systems makes it possible to avoid production risks due to the unpredictability of the outdoor weather conditions and to maximize the feed efficiency, with positive effects on both the animal welfare and farm profit. On the other hand, the use of HVAC entails not negligible thermal and electrical energy consumptions. In literature, few data about the real thermo-hygrometric conditions and energy consumption of animal houses are present. In this work (in the framework of the EPAnHaus – Energy Performance certification of Animal Houses –project), the results obtained from a long-term monitoring campaign in two growing-finishing pig houses are presented. The performed measurements concerned environmental parameters and electrical power that were acquired during two production cycles (warm and cool seasons). For the environmental monitoring, both the buildings were equipped with temperature and relative humidity sensors embedded in portable data loggers (10 minutes logging time) that were placed in various spots inside the houses. Outdoor data were obtained through a weather station located near the test site. Concerning the energy monitoring, power transducers connected to portable data loggers (10 seconds logging time) were placed in the electric panel of each house to log the electrical energy consumptions due to ventilation, lighting and automatic feeding. The acquired data were used for carrying out analysis concerning the indoor thermal environment, its characterization in relation with the animal welfare, the electrical energy uses and the existing relations between all these aspects. The obtained data were used to evaluate the effectiveness of the HVAC system in guaranteeing the adequate indoor climate conditions (avoiding heat/cold stress conditions) and to identify electrical energy uses.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2776
Author(s):  
Xin Ye ◽  
Jun Lu ◽  
Tao Zhang ◽  
Yupeng Wang ◽  
Hiroatsu Fukuda

Space cooling is currently the fastest-growing end-user in buildings. The global warming trend combined with increased population and economic development will lead to accelerated growth in space cooling in the future, especially in China. The hot summer and cold winter (HSCW) zone is the most densely populated and economically developed region in China, but with the worst indoor thermal environment. Relatively few studies have been conducted on the actual measurements in the optimization of insulation design under typical intermittent cooling modes in this region. This case study was conducted in Chengdu—the two residences selected were identical in design, but the south bedroom of the case study residence had interior insulation (inside insulation on all opaque interior surfaces of a space) retrofitted in the bedroom area in 2017. In August 2019, a comparative on-site measurement was done to investigate the effect of the retrofit work under three typical intermittent cooling patterns in the real-life scenario. The experimental result shows that interior insulation provides a significant improvement in energy-saving and the indoor thermal environment. The average energy savings in daily cooling energy consumption of the south bedroom is 42.09%, with the maximum reaching 48.91%. In the bedroom with interior insulation retrofit, the indoor temperature is closer to the set temperature and the vertical temperature difference is smaller during the cooling period; when the air conditioner is off, the room remains a comfortable temperature for a slightly longer time.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jianglong Zhen ◽  
Jun Lu ◽  
Guangqin Huang ◽  
Liyue Zeng ◽  
Jianping Lin ◽  
...  

In order to study the characteristics of indoor thermal environment in the airport terminal in Tibet Plateau with radiant floor heating in winter, a field measurement of the indoor thermal environment was conducted in Lhasa Gonggar Airport terminal 2. First, the unique climate characteristics in Tibet Plateau were analyzed through comparison of meteorological parameters in Beijing and Lahsa. The thermal environment in the terminal was divided into outer zone and inner zone as well as south zone and north zone. Thermal environment parameters including air temperature, black globe temperature, relative humidity in each zone, and inner surface temperature of envelope were measured and analyzed. Meanwhile, temperature and relative humidity in the vertical direction were measured. In addition, PMV and PPD were calculated for evaluating the thermal environment in the terminal. The findings can provide guidance for the design and regulation of thermal environment in terminals in Tibet Plateau in China.


Sign in / Sign up

Export Citation Format

Share Document