Position-sensitive detectors based on two-dimensional materials

Nano Research ◽  
2020 ◽  
Author(s):  
Wenhui Wang ◽  
Junpeng Lu ◽  
Zhenhua Ni
1986 ◽  
Vol 19 (3) ◽  
pp. 145-163 ◽  
Author(s):  
U. W. Arndt

The physical processes are examined which can be used for the detection of X-rays in the range between about 3 and about 20 keV and for the positional localization of the incident photons. The criteria for choosing a detector for particular purposes are discussed in general terms. Specific examples of one- and two-dimensional detectors are then considered with particular emphasis on devices which are still in a state of development, and an attempt is made to summarize the nature, performance and suitability for different experiments of available detectors.


1988 ◽  
Vol 32 ◽  
pp. 397-406 ◽  
Author(s):  
G.M. Borgonovi ◽  
C.P. Gazza

Conventional methods of determination of residual stress in polycrystalline samples use either diffractometers or one-dimensional position-sensitive detectors. The most commonly used technique, the so-called "sin2ψ" method, requires several measurements at different angular positions of the sample. With diffractometers, two rotations are required, while with one-dimensional detectors, one rotation is required (except for the so-called single exposure technique, which requires two one-dimensional position-sensitive detectors). Rotation can be a potential source of errors if the sample is not aligned very carefully.


1979 ◽  
Vol 162 (1-3) ◽  
pp. 657-675 ◽  
Author(s):  
U. Lynen ◽  
H. Stelzer ◽  
A. Gobbi ◽  
H. Sann ◽  
A. Olmi

1999 ◽  
Vol 55 (10) ◽  
pp. 1718-1725 ◽  
Author(s):  
J. W. Pflugrath

X-ray diffraction images from two-dimensional position-sensitive detectors can be characterized as thick or thin, depending on whether the rotation-angle increment per image is greater than or less than the crystal mosaicity, respectively. The expectations and consequences of the processing of thick and thin images in terms of spatial overlap, saturated pixels, X-ray background andI/σ(I) are discussed. Thed*TREKsoftware suite for processing diffraction images is briefly introduced, and results fromd*TREKare compared with those from another popular package.


1986 ◽  
Vol 30 ◽  
pp. 523-526
Author(s):  
G. M. Borgonovi

Measurements of residual stress by X-ray diffraction are usually carried out with diffractometers or with one-dimensional position sensitive detectors. The stress is determined from the displacement of the peak that results from intersecting a diffraction cone at high angle with the line scanned by the detector. If a two-dimensional flat detector is used, the intersection of the diffraction cone with the detector plane is a ring, or section of a ring, which is also slightly displaced by the stress. The suggestion has been made use a two-dimensional detector to determine the surface state of stress.


1978 ◽  
Vol 152 (1) ◽  
pp. 191-194 ◽  
Author(s):  
A. Gabriel ◽  
F. Dauvergne ◽  
G. Rosenbaum

Sign in / Sign up

Export Citation Format

Share Document