A method for the layer compression test considering the anisotropic material behavior

2009 ◽  
Vol 2 (S1) ◽  
pp. 483-486 ◽  
Author(s):  
M. Merklein ◽  
A. Kuppert
2021 ◽  
Vol 883 ◽  
pp. 303-308
Author(s):  
Peter Hetz ◽  
Matthias Lenzen ◽  
Martin Kraus ◽  
Marion Merklein

Numerical process design leads to cost and time savings in sheet metal forming processes. Therefore, a modeling of the material behavior is required to map the flow properties of sheet metal. For the identification of current yield criteria, the yield strength and the hardening behavior as well as the Lankford coefficients are taken into account. By considering the anisotropy as a function of rolling direction and stress state, the prediction quality of anisotropic materials is improved by a more accurate modeling of the yield locus curve. According to the current state of the art, the layer compression test is used to determine the corresponding Lankford coefficient for the biaxial tensile stress state. However, the test setup and the test procedure is quite challenging compared to other tests for the material characterization. Due to this, the test is only of limited suitability if only the Lankford coefficient has to be determined. In this contribution, a simplified test is presented. It is a reduction of the layer compression test to one single sheet layer. So the Lankford coefficient for the biaxial tensile stress state can be analyzed with a significantly lower test effort. The results prove the applicability of the proposed test for an easy and time efficient characterization of the biaxial Lankford coefficient.


1989 ◽  
Vol 5 (3) ◽  
pp. 227-246 ◽  
Author(s):  
Y.F. Dafalias ◽  
M.M. Rashid

2019 ◽  
Vol 18 ◽  
pp. 2760-2766 ◽  
Author(s):  
C.Anand Badrish ◽  
Nitin Kotkunde ◽  
Omkar Salunke ◽  
Swadesh Kumar Singh

2013 ◽  
Vol 58 (2) ◽  
pp. 493-496 ◽  
Author(s):  
W. Wajda ◽  
Ł. Madej ◽  
H. Paul

Capabilities of crystal plasticity finite element (CPFE) model in application to modeling polycrystalline aluminum sample behavior during plain strain compression test are discussed within the present work. To simplify analysis of material behavior during plain strain compression the aluminum specimen is composed of only three grains, both in experiment and numerical simulation. To reconstruct appropriate grains morphology a digital material representation (DMR) technique is used. The predicted/calculated values of loads and pole figures are compared with the experimental data. Calculated results remain in good agreement with experimental data what highlight predictive capabilities of the proposed approach in modeling material behavior under loading conditions. The conclusions regarding model capabilities and possible improvements during further work are also drawn in the paper.


Author(s):  
Oliver Hilgert ◽  
Steffen Zimmermann ◽  
Christoph Kalwa

Plastic anisotropic material behavior of UOE line pipe is investigated in view of its structural response. Common load cases are considered and their resultant strain capacity concerning Strain Based Design demands are discussed. Hill’s yield function is used to analyze steel line pipe under internal pressure and bending moment. Here, a three-dimensional anisotropic plastic strain evolution is considered. It was shown, that underlying anisotropic material behavior can be beneficial for the structural response of line pipe, although it depends on the load case and the directional anisotropy. That is in some way contrary to the demands in specifications, where isotropic material behavior is desired.


2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Farah Hamandi ◽  
James T. Tsatalis ◽  
Tarun Goswami

The main motivation for studying damage in bone tissue is to better understand how damage develops in the bone tissue and how it progresses. Such knowledge may help in the surgical aspects of joint replacement, fracture fixation or establishing the fracture tolerance of bones to prevent injury. Currently, there are no standards that create a realistic bone model with anisotropic material properties, although several protocols have been suggested. This study seeks to retrospectively evaluate the damage of bone tissue with respect to patient demography including age, gender, race, body mass index (BMI), height, and weight, and their role in causing fracture. Investigators believe that properties derived from CT imaging data to estimate the material properties of bone tissue provides more realistic models. Quantifying and associating damage with in vivo conditions will provide the required information to develop mathematical equations and procedures to predict the premature failure and potentially mitigate problems before they begin. Creating a realistic model for bone tissue can predict the premature failure(s), provide preliminary results before getting the surgery, and optimize the design of orthopaedic implants. A comparison was performed between the proposed model and previous efforts, where they used elastic, hyper- elastic, or elastic-plastic properties. Results showed that there was a significant difference between the anisotropic material properties of bone when compared with unrealistic previous methods. The results showed that the density is 50% higher in male subjects than female subjects. Additionally, the results showed that the density is 47.91% higher in Black subjects than Mixed subjects, 53.27% higher than Caucasian subjects and 57.41% higher than Asian. In general, race should be considered during modeling implants or suggesting therapeutic techniques.


Sign in / Sign up

Export Citation Format

Share Document