scholarly journals Robot Navigation Based on Predicting of Human Interaction and its Reproducible Evaluation in a Densely Crowded Environment

Author(s):  
Yuichi Kobayashi ◽  
Takeshi Sugimoto ◽  
Kazuhito Tanaka ◽  
Yuki Shimomura ◽  
Francisco J. Arjonilla Garcia ◽  
...  

AbstractTo achieve robot navigation in crowded environments having high densities of moving people, it is insufficient to simply consider humans as moving obstacles and avoid collisions with them. That is, the impact of an approaching robot on human movements must be considered as well. Moreover, various navigation methods have been tested in their own environments in the literature, which made them difficult to compare with one another. Thus, we propose an autonomous robot navigation method in densely crowded environments for data-based predictions of robot-human interactions, together with a reproducible experimental test under controlled conditions. Based on localized positional relationships with humans, this method extracts multiple alternative paths, which can implement either following or avoidance, and selects an optimal path based on time efficiency. Each path is selected using neural networks, and the various paths are evaluated by predicting the position after a given amount of time has elapsed. These positions are then used to calculate the time required to reach a certain target position to ensure that the optimal path can be determined. We trained the predictor using simulated data and conducted experiments using an actual mobile robot in an environment where humans were walking around. Using our proposed method, collisions were avoided more effectively than when conventional navigation methods were used, and navigation was achieved with good time efficiency, resulting in an overall reduction in interference with humans. Thus, the proposed method enables an effective navigation in a densely crowded environment, while collecting human-interaction experience for further improvement of its performance in the future.

2021 ◽  
Vol 16 (11) ◽  
pp. 26
Author(s):  
Luqiong Tong ◽  
Jing Li

The importance of consumer creativity is currently widely recognized, yet the examination of the influence of environmental elements on consumer creativity is still limited. Our research investigates the influence of social crowding on consumer creativity performance. While past research mainly focuses on extreme crowding conditions, our research examines the impact of a moderate level of social crowding, which is more commonly experienced in reality. From two lab experiments, our research shows that compared to consumers in crowded environments, consumers in uncrowded environments perform better on creativity tasks (e.g., designing promotion slogans and identifying solutions to problems). Furthermore, the effect of social crowding is mediated by approach motives. Consumers in an uncrowded (vs. crowded) environment are more likely to trigger approach-based motivation, which enhances their creativity performance. These findings extend our knowledge of social crowding and creativity and can help consumers and companies improve creativity performance in appropriate environments.


2021 ◽  
Author(s):  
Shahanaz Ayub ◽  
Navneet Singh ◽  
Md. Zair Hussain ◽  
Mohd Ashraf ◽  
Dinesh Kumar Singh ◽  
...  

Abstract Mobile robots have been increasingly popular in a variety of industries in recent years due to their ability to move in variable situations and perform routine jobs effectively. Path planning, without a dispute, performs a crucial part in multi-robot navigation, making it one of the very foremost investigated issues in robotics. In recent times, meta-heuristic strategies have been intensively investigated to tackle path planning issues in the similar way that optimizing issues were handled, or to design the optimal path for such multi-robotics to travel from the initial point to such goal. The fundamental purpose of portable multi-robot guidance is to navigate a mobile robot across a crowded area from initial point to target position while maintaining a safe route and creating optimum length for the path. Various strategies for robot navigational path planning were investigated by scientists in this field. This work seeks to discuss bio-inspired methods that are exploited to optimize hybrid neuro-fuzzy analysis which is the combination of neural network and fuzzy logic is optimized using the Particle Swarm optimization technique (PSO) in real-time scenarios. Several optimization approaches of bio-inspired techniques are explained briefly. Its simulation findings, which are displayed for two simulated scenarios reveal that hybridization increases multi-robot navigation accuracy in terms of navigation duration and length of the path.


Author(s):  
Tingjun Lei ◽  
Chaomin Luo ◽  
John E. Ball ◽  
Zhuming Bi

In recent years, computer technology and artificial intelligence have developed rapidly, and research in the field of mobile robots has continued to deepen with development of artificial intelligence. Path planning is an essential content of mobile robot navigation of computing a collision-free path between a starting point and a goal. It is necessary for mobile robots to move and maneuver in different kinds of environment with objects and obstacles. The main goal of path planning is to find the optimal path between the starting point and the target position in the minimal possible time. A new firework algorithm (FWA) integrated with a graph theory, Dijkstra's algorithm developed for autonomous robot navigation, is proposed in this chapter. The firework algorithm is improved by a local search procedure that a LIDAR-based local navigator algorithm is implemented for local navigation and obstacle avoidance. The grid map is utilized for real-time intelligent robot mapping and navigation. In this chapter, both simulation and comparison studies of an autonomous robot navigation demonstrate that the proposed model is capable of planning more reasonable and shorter, collision-free paths in non-stationary and unstructured environments compared with other approaches.


Biomimetics ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Adam Bignold ◽  
Francisco Cruz ◽  
Richard Dazeley ◽  
Peter Vamplew ◽  
Cameron Foale

Interactive reinforcement learning methods utilise an external information source to evaluate decisions and accelerate learning. Previous work has shown that human advice could significantly improve learning agents’ performance. When evaluating reinforcement learning algorithms, it is common to repeat experiments as parameters are altered or to gain a sufficient sample size. In this regard, to require human interaction every time an experiment is restarted is undesirable, particularly when the expense in doing so can be considerable. Additionally, reusing the same people for the experiment introduces bias, as they will learn the behaviour of the agent and the dynamics of the environment. This paper presents a methodology for evaluating interactive reinforcement learning agents by employing simulated users. Simulated users allow human knowledge, bias, and interaction to be simulated. The use of simulated users allows the development and testing of reinforcement learning agents, and can provide indicative results of agent performance under defined human constraints. While simulated users are no replacement for actual humans, they do offer an affordable and fast alternative for evaluative assisted agents. We introduce a method for performing a preliminary evaluation utilising simulated users to show how performance changes depending on the type of user assisting the agent. Moreover, we describe how human interaction may be simulated, and present an experiment illustrating the applicability of simulating users in evaluating agent performance when assisted by different types of trainers. Experimental results show that the use of this methodology allows for greater insight into the performance of interactive reinforcement learning agents when advised by different users. The use of simulated users with varying characteristics allows for evaluation of the impact of those characteristics on the behaviour of the learning agent.


Sign in / Sign up

Export Citation Format

Share Document