Research on dynamic updating of three dimensional geological modeling based on the OO-Solid model

2008 ◽  
Vol 14 (3) ◽  
pp. 420-424
Author(s):  
En-ke Hou ◽  
Nian-dong Deng ◽  
Zhi-hua Zhang ◽  
Zhou Zhao
2001 ◽  
Vol 12 (5) ◽  
pp. 479-484 ◽  
Author(s):  
Tetsuji Uemura ◽  
Takashi Hayashi ◽  
Yoshihiko Furukawa ◽  
Nobuyuki Mitsukawa ◽  
Atsushige Yoshikawa ◽  
...  

2011 ◽  
Vol 267 ◽  
pp. 217-220 ◽  
Author(s):  
Jiang Tian Shi ◽  
De Xin Sun ◽  
Hong Zhuang Zhang

Mechanical structure of three degree of freedoms SCARA robot adopts horizontal joints, and opening PMAC multitude axis motion controller based PC is looked as kernel of control system, adopts the open hardware and software structure, we can conveniently enlarge its functions according to needs, so it has very good expansibility. Its three-dimensional solid model and virtual assemble is carried out using CATIA application, so that we can estimate the status of interference. Through validation, we can prove the feasibility of the robot.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Mei

Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.


2019 ◽  
Vol 30 (4) ◽  
pp. 181-195
Author(s):  
Tatsuya NEMOTO ◽  
Susumu NONOGAKI ◽  
Shinji MASUMOTO

2016 ◽  
pp. 7-10
Author(s):  
Ya. O. Antipin

The author suggests and describes the most optimal, reliable method for modeling saturation of the productive oil reservoirs The method takes into account the impact of capillary forces in porous media, water-oil transition zone. This method most fully meets the modern requirements of threedimensional geological and hydrodynamic modeling.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 638
Author(s):  
Zhenzhou Zhu ◽  
Xiaodong Lei ◽  
Nengxiong Xu ◽  
Dongyue Shao ◽  
Xingyu Jiang ◽  
...  

With the increasing demand for energy and the growing concern for atmospheric pollution in Beijing, China, the exploitation and utilization of geothermal resources are becoming more desirable. The study combined three-dimensional geological modeling with geothermal field analysis to make clear the potential and distribution of geothermal resources in the northwest of the Beijing plain, which could provide a scientific basis for rational utilization in the study area. Based on the analysis of the geological data and geothermal conditions, we created a 3D geological model of the study area, and then added isothermal surfaces into the model and analyzed the heat flow to enhance the understanding of the present geothermal field. After that, the volumes of different temperature intervals of heat reservoirs were calculated accurately and automatically by the integration of the model and the isothermal surfaces. Finally, the geothermal reserves were calculated by the improved volumetric method, and the distribution of resources was analyzed comprehensively. The results showed that, in the study area, the heat flow values ranged from 49 to 99 mW m−2, and the average elevations of 25 °C, 40 °C, and 60 °C isothermal surfaces were at −415 m, −1282 m, and −2613 m, respectively. The geothermal reserves were 5.42 × 1019 J and the volume of the heat reservoir was 4.88 × 1011 m3. The geothermal resources of the study area had good potential and could support local green development.


Sign in / Sign up

Export Citation Format

Share Document