Airtight negative pressure dust-control technology and application of transpersite in the coal conveyer belt system

2008 ◽  
Vol 14 (4) ◽  
pp. 562-566 ◽  
Author(s):  
Yun-dong Ma ◽  
Hui-yan Jia ◽  
Da-ming Zhang
Author(s):  
Dilip Thapa Masrangi ◽  
Hadinata Salim ◽  
F. Hakami ◽  
A. Pramanik ◽  
A. K. Basak
Keyword(s):  

Author(s):  
Mishra Nikhilkumar N ◽  
Madale Kabirdas N ◽  
Khairnar Pratik S ◽  
Sangale Prasad M ◽  
Ostwal Rishabh S

All product manufacturing units need to have a faulty product detection and separation system in order to maintain product quality and maintain a good reputation. So here we demonstrate such a system using a mini conveyer belt system. We propose to design and fabricate a faulty product detection and separation mechanism. Each product is different and thus has different mechanisms to detect faulty products. Here we detect fault in lock based on its size and operations. We use a sensor to detect each lock size and operations as products move over a conveyer belt. The conveyer is design so that it can hold the lock so that it does not fall or leave the conveyer belt. A defected product with size lower than minimum limit will be automatically detected as it moves on a conveyer belt and separated by a conveyer arm. If the product passes the size test the next sensor perform it task to operate the lock so that it can open the locking mechanism and check if it opens or not. If the product passes the test it is send for packaging and if not the product is separated and sent to production line for correct the fault. Here we use rollers and rubber belt to develop a mini conveyer belt mechanism. This mechanism is operated by a motor. This system uses servo motor arm to separate the faulty product.


Author(s):  
Jianghong Xie

The paper mainly elaborates the negative pressure control technology and commissioning approaches for double-wall containment of Russian WWER-1000 nuclear power units. It also carries out an analysis and research on the layered negative pressure technology in the containment. It mainly includes the following three parts: A Russian WWER-1000 nuclear power unit adopts the structure of double-wall containment for its Reactor building, with independent negative pressure systems for the containment and the annular space between the two walls. The paper mainly elaborates the control methods and limits requirements for the negative pressure in the containment and the annular space under the normal operation condition and in case of design basis accidents, with analysis and argumentation on the design function and operation requirements of the negative pressure system for the containment and the annular space. In the paper, the design philosophy of layered negative pressure and its feasibility study are analyzed from the aspects of radiated partition, air distribution of the negative pressure system and containment separator for layered negative pressure. The commissioning methods and technical requirements of negative pressure system in the Reactor building are described in the paper. Problems encountered during commissioning are also addressed and analyzed. Operations practices prove that the negative pressure control technology for double-wall containment of WWER-1000 nuclear power unit is advanced and reliable, which meets the requirements on nuclear air decontamination emission and radiation protection, and is worthy of study, research and reference.


2020 ◽  
Vol 133 ◽  
pp. 41-50 ◽  
Author(s):  
Qingguo Wang ◽  
Deming Wang ◽  
Fangwei Han ◽  
Fan Yang ◽  
Yingxia Sheng

2021 ◽  
Vol 11 (21) ◽  
pp. 10313
Author(s):  
Guoming Liu ◽  
Qianqian Xu ◽  
Jipeng Zhao ◽  
Wen Nie ◽  
Qingkun Guo ◽  
...  

Pneumoconiosis has become one of the biggest threats to the occupational health and life safety of mining workers in China. The number of pneumoconiosis cases has continued to rise in recent years. The main task of occupational health development is to study the pathogenesis of pneumoconiosis and to develop mine dust prevention and control technology. Therefore, this paper summarizes the research progress of coal worker pneumoconiosis and dust prevention and control in mines. Firstly, the research progress of coal worker pneumoconiosis is analyzed from the aspects of pathogenesis, animal model and pathological changes of coal worker pneumoconiosis. Then, the existing basic theory and technology of dust prevention are described, including ventilation and dust removal, spray and dust suppression, and chemical dust suppression methods. Finally, based on the dust removal theory of wet shotcrete, the progress of shotcrete dust control technology and equipment used for shotcrete is summarized from the aspects of shotcrete technology process and shotcrete materials. At the same time, in view of the shortcomings of the existing research, the next research prospect is given in the pathogenesis of pneumoconiosis, intelligent dust prevention, jet spraying dust removal and so on. This paper provides theoretical support for realizing the separate source and efficient treatment of mine dust control and helps to improve the clean production level of mine, control and prevent pneumoconiosis.


Sign in / Sign up

Export Citation Format

Share Document