Wear of Rubbers and Its Control in Conveyer Belt System

Author(s):  
Dilip Thapa Masrangi ◽  
Hadinata Salim ◽  
F. Hakami ◽  
A. Pramanik ◽  
A. K. Basak
Keyword(s):  
Author(s):  
Mishra Nikhilkumar N ◽  
Madale Kabirdas N ◽  
Khairnar Pratik S ◽  
Sangale Prasad M ◽  
Ostwal Rishabh S

All product manufacturing units need to have a faulty product detection and separation system in order to maintain product quality and maintain a good reputation. So here we demonstrate such a system using a mini conveyer belt system. We propose to design and fabricate a faulty product detection and separation mechanism. Each product is different and thus has different mechanisms to detect faulty products. Here we detect fault in lock based on its size and operations. We use a sensor to detect each lock size and operations as products move over a conveyer belt. The conveyer is design so that it can hold the lock so that it does not fall or leave the conveyer belt. A defected product with size lower than minimum limit will be automatically detected as it moves on a conveyer belt and separated by a conveyer arm. If the product passes the size test the next sensor perform it task to operate the lock so that it can open the locking mechanism and check if it opens or not. If the product passes the test it is send for packaging and if not the product is separated and sent to production line for correct the fault. Here we use rollers and rubber belt to develop a mini conveyer belt mechanism. This mechanism is operated by a motor. This system uses servo motor arm to separate the faulty product.


2017 ◽  
Vol 111 ◽  
pp. 148-158 ◽  
Author(s):  
F. Hakami ◽  
A. Pramanik ◽  
N. Ridgway ◽  
A.K. Basak

Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 304-305
Author(s):  
James M. Krall ◽  
Douglas S. Packer ◽  
Peter V. Bradley

The airless paint sprayer was investigated as an alternative to compressed-gas spray systems. The airless sprayer was adapted to a conventional agricultural spray nozzle system. In addition, modifications to the airless sprayer's on/off switch were made to achieve a more consistent delivery. The equipment was found satisfactory for applying either emulsifiable concentrates or wettable powder herbicides at typical concentrations in water. The addition of a conventional conveyer-belt system completed the steps necessary to make the commercially available airless sprayer a viable alternative to compressed-gas propulsion systems.


Author(s):  
Alexander Diederich ◽  
Christophe Bastien ◽  
Karthikeyan Ekambaram ◽  
Alexis Wilson

The introduction of automated L5 driving technologies will revolutionise the design of vehicle interiors and seating configurations, improving occupant comfort and experience. It is foreseen that pre-crash emergency braking and swerving manoeuvres will affect occupant posture, which could lead to an interaction with a deploying airbag. This research addresses the urgent safety need of defining the occupant’s kinematics envelope during that pre-crash phase, considering rotated seat arrangements and different seatbelt configurations. The research used two different sets of volunteer tests experiencing L5 vehicle manoeuvres, based in the first instance on 22 50th percentile fit males wearing a lap-belt (OM4IS), while the other dataset is based on 87 volunteers with a BMI range of 19 to 67 kg/m2 wearing a 3-point belt (UMTRI). Unique biomechanics kinematics corridors were then defined, as a function of belt configuration and vehicle manoeuvre, to calibrate an Active Human Model (AHM) using a multi-objective optimisation coupled with a Correlation and Analysis (CORA) rating. The research improved the AHM omnidirectional kinematics response over current state of the art in a generic lap-belted environment. The AHM was then tested in a rotated seating arrangement under extreme braking, highlighting that maximum lateral and frontal motions are comparable, independent of the belt system, while the asymmetry of the 3-point belt increased the occupant’s motion towards the seatbelt buckle. It was observed that the frontal occupant kinematics decrease by 200 mm compared to a lap-belted configuration. This improved omnidirectional AHM is the first step towards designing safer future L5 vehicle interiors.


Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hongkai Li ◽  
Xianfei Sun ◽  
Zishuo Chen ◽  
Lei Zhang ◽  
Hongchao Wang ◽  
...  

Abstract Inspired by gecko’s adhesive feet, a wheeled wall climbing robot is designed in this paper with the synchronized gears and belt system acting as the wheels by considering both motion efficiency and adhesive capability. Adhesion of wheels is obtained by the bio-inspired adhesive material wrapping on the outer surface of wheels. A ducted fan mounted on the back of the robot supplies thrust force for the adhesive material to generate normal and shear adhesion force whilemoving on vertical surfaces. Experimental verification of robot climbing on vertical flat surface was carried out. The stability and the effect of structure design parameters were analyzed.


Sign in / Sign up

Export Citation Format

Share Document