Nomographs for predicting allowable bearing capacity and elastic settlement of shallow foundation on granular soil

2019 ◽  
Vol 12 (15) ◽  
Author(s):  
Maher Omar ◽  
Abdallah Shanableh ◽  
Khaled Hamad ◽  
Ali Tahmaz ◽  
Mohamed G. Arab ◽  
...  
2020 ◽  
Vol 10 (8) ◽  
pp. 2920
Author(s):  
Assel Shaldykova ◽  
Sung-Woo Moon ◽  
Jong Kim ◽  
Deuckhang Lee ◽  
Taeseo Ku ◽  
...  

The design of shallow foundations is performed in accordance with different building regulations depending on geotechnical and geological conditions. This paper involves the design calculations applying Kazakhstani and European approaches. The design of shallow foundations in Nur-Sultan city in Kazakhstan was implemented by the calculation of bearing capacity and elastic settlement in accordance with the design procedures provided in SP RK 5.01-102-2013: Foundations of buildings and structures, and Eurocode 7: Geotechnical design. The calculated results of bearing capacity and elastic settlement for two types of shallow foundations, such as pad foundation and strip foundation, adhering to Kazakhstani and European approaches are relatively comparable. However, the European approach provided higher values of bearing capacity and elastic settlement for the designed shallow foundation compared to the Kazakhstani approach. The difference in the results is explained by the application of different values of partial factors of safety for the determination of bearing capacity and different methods for the calculation of the elastic settlement of shallow foundations (i.e., elasticity theory and layer summation method).


2017 ◽  
Vol 8 (3) ◽  
pp. 143
Author(s):  
Rifki Asrul Sani

ABSTRAKSeiring dengan terjadinya longsoran di beberapa titik wilayah di bukit Hambalang, maka diperlukan kajian data kondisi geologi teknik berupa sifat fisik dan mekanik tanah serta batuan bawah permukaan, terutama mengenai daya dukung tanah dalam menahan beban bangunan di atasnya agar tidak terjadi penurunan. Metode yang digunakan dalam penelitian ini dibagi menjadi tiga, yaitu metode penelitian studio dengan memanfaatkan data-data sekunder yang telah ada, metode penelitian di lapangan melalui pemetaan geologi untuk mendapatkan data litologi yang tersingkap di permukaan, zonasi longsoran yang terjadi, dan identifikasi kekuatan tanah hasil pemboran geoteknik dengan Standard Penetration Test (SPT), serta metode penelitian di laboratorium untuk mendapatkan parameter sifat fisik dan mekanik tanah sebagai penunjang data daya dukung tanah serta geologi teknik daerah penelitian. Hasil perhitungan fondasi dangkal untuk general soil shear condition dan local soil shear condition dapat disimpulkan bahwa daya dukung tanah yang diizinkan (qa) untuk setiap kedalaman yang paling tinggi pada fondasi bujur sangkar (square footing) dan nilai tertinggi yang terdapat pada kedalaman 2 m, yaitu 57,32 ton/m2 dan 36,11 ton/m2. Fondasi yang paling rendah untuk semua kedalaman pada fondasi menerus (continuous footing) untuk kedalaman 2 m memiliki nilai 34,49 ton/m2 dan 21,25 ton/m2. Berdasarkan data SPT, nilai daya dukung yang diizinkan (qa) pada masing-masing titik bor berkisar pada rentang 2,85 ton/m2 sampai 16,85 ton/m2. Kata kunci: longsoran, daya dukung, Standard Penetration Test (SPT). ABSTRACTAlong with the landslide in some areas on the Hambalang Hill, it needs data of engineering geological study such as mechanical and physical properties of soil also subsurface rocks. Especially regarding the soil bearing capacity in order to restrain the building from settlement. There are three methods which used in this research, those are studio research by using secondary data, fieldwork research that is geological mapping conducted to obtain data on lithological rocks at surface, landslide zone and soil strength identification from geotechnical drilling with Standard Penetration Test (SPT) and laboratory research to obtain the soil parameters of physical and mechanical properties, which used to support soil bearing capacity data and engineering geology in research area. The calculation results of the shallow foundation for general soil shear condition and the local soil shear condition it could be concluded that the allowable bearing capacity for all depth which is highest at the square footing and the highest value found to a depth of 2 m, that is 57.32 ton/m2 and 36.11 ton/m2. The lowest foundation for all the depth of the continuous footing to a depth of 2 m had value 34.49 ton/m2 and 21.25 ton/m2. Based on data from SPT, the allowable bearing capacity on each of borehole ranging from 2.85 ton/m2 to 16.85 ton/m2. Keywords: landslide, bearing capacity, Standard Penetration Test (SPT).


1990 ◽  
Vol 27 (4) ◽  
pp. 526-529 ◽  
Author(s):  
C. Cherubini

A closed-form solution for the probabilistic evaluation of shallow foundation bearing capacity according to the model proposed by Terzaghi, as modified by Krizek, is described. A numerical example explains the method of computation. Key words: statistics, probability, ultimate bearing capacity, allowable bearing capacity, shallow foundations, friction angle, numerical methods.


Author(s):  
Olumuyiwa O. Falowo ◽  
Michael B. Amodu

Integrated geophysical and geotechnical investigations for foundation design have proved to be good veritable tools in effective foundation design and construction. Geophysical and geotechnical methods involving electrical resistivity and cone penetration test have been carried out to investigate the foundation soil conditions of Ode Irele, southwestern Nigeria. Six vertical electrical sounding (VES) were carried out along two traverses; which is complemented by two cone penetration tests with seven trial tests at different subsurface depths. The geotechnical results showed that the soils are sand and silt dominated. All the tested parameters fall within the Nigeria federal ministry of works and housing specification with liquid limit (< 50%), plastic limit (< 30%), plasticity index (< 20%). The geoelectric sections identified maximum of six geoelectric/geologic subsurface layers comprising the topsoil (red sand), weathered layer (made up of coastal sand/white sand), clayey sand (which is the major aquitard in the area), intermediate sand aquifer unit. However the coastal sand layer has moderately high resistivity at shallow depth to sustain foundation load with thickness greater than 2 m. The groundwater level measured from existing borehole records 17.5 m which may not or seriously affect the bases of the foundation footing. Consequently an average allowable bearing capacity of 150 KN/m2 (ultimate bearing capacity of 450 KN/m2) would be appropriate for design of shallow foundation in the area, at a depth not less than 1.6 m in Ode Irele and 0.8 m at Ajagba. The foundation width of 0.6 m would produce minimum bearing settlement less than 25 mm. The appropriate (recommended) ultimate bearing and allowable bearing capacity for strip and square footings at depth levels of 0.6 – 1.2 m vary from 1486 – 1842 KN/m2 and 495 - 614 KN/m2; and 2056 – 2489 KN/m2 and 685 - 830 KN/m2 respectively.


Engineering subsoil evaluation and foundation design have been undertaken at Ilaje area of Ondo State, Nigeria. The aim of this study was to examine the geo-electrical and geotechnical parameters of the subsoil to sustain building structures and also provide appropriate foundation design alternatives. A total of six VES stations were occupied and complemented with geotechnical analysis of seven soil samples collected at two cone penetration test locations. The result showed that all the determined geotechnical parameters of the subsoil fall within the specification recommended for foundation material by federal ministry of works and housing of Nigeria. The VES showed a predominant (66.67%) HKQ curve type. The upper 5 m is characterized by moderate thickness and high resistivity (average of 450ohm-m) values to sustain structural load. An average allowable bearing capacity of 150 KN/m2 was recommended for design of bases/footings for shallow foundation at a depth not less than 1.0 m. The obtained settlement values are less than 50 mm and within tolerable limit, for foundation width ranging from 0.5 to 3.0 m. However there was drastic reduction in settlement values (below 25mm) when the foundation width was increased to 2 and 3m. The allowable capacity of the driven pile ranges from 64 – 115 KN, 206 – 347 KN, and 418 – 677 KN at 5m, 10 m and 15 m respectively. The allowable bearing capacity for bored piles ranges from 34 – 69 KN, 85 – 165 KN, and 146 – 268 at depth levels of 5 m, 10 m, and 15 m respectively.


2020 ◽  
Vol 67 (1) ◽  
pp. 21-33
Author(s):  
O. Falowo Olumuyiwa

AbstractThe study integrates geophysical and geotechnical methods for subsoil evaluation and shallow foundation design. The study involved six vertical electrical sounding and geotechnical investigation involving cone penetration test and laboratory soil analysis. Three major geologic units were delineated; the topsoil, weathered layer and partly weathered/fractured/fresh bedrock. The overburden thickness is in between 15.2–32.9 m. Based on resistivity (16–890 ohm-m) and thickness (12.7–32 m) the weathered layer is competent to distribute structural load to underlying soil/rock. The groundwater level varies from 4.5 to 12.3 m. Therefore an average allowable bearing capacity of 200 kPa is recommended and would be appropriate for design of shallow foundation in the area, at a depth not less than 1.0 m with an expected settlement ranging from 9.03–48.20 mm. The ultimate bearing and allowable bearing capacity for depth levels of 1–3 m vary from 1403–2666 kPa and 468–889 kPa for strip footing while square footing varies in between 1956–3489 kPa and 652–1163 kPa respectively.


Sign in / Sign up

Export Citation Format

Share Document