overburden thickness
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 8 (12) ◽  
pp. 411-417
Author(s):  
Adediran Olanrewaju Adegoke ◽  
E. Rotimi Olafisoye ◽  
Oluwatoyin Ologe

Electrical resistivity method was used to carry out hydrogeophysical study in order to evaluate the groundwater potential of Igarra Comprehensive High School, Akoko Edo Local Government, Nigeria. The vertical electrical sounding technique (VES) was adopted for the resistivity method. A total of eighteen electrical soundings were conducted across the area using the Schlumberger electrode array with AB/2 varying from 1 to 65 m. After the data acquisition, interpretation was carried out qualitatively and quantitatively and the results were presented as sounding curves, tables, charts, maps and geoelectric sections. The generated geoelectric layers from the sounding curves revealed four geologic layers: the topsoil, the weathered layer, the partially weathered/fractured basement and the fresh basement with their resistivity values ranging from 129.1 to 956.4 -m, 6.8 to 1491.1 -m, 261.3 to 776.6 -m and 1515.6 to 2653.5 -m respectively. The overburden thickness in the study area varies from 5.5 to 23.5 m. The groundwater potential map enabled in the classification of the study area into: low, medium and high groundwater potential area. About 85% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential rating and the remaining 5% constitutes high groundwater potential rating. Keywords: Groundwater, overburden, electrical resistivity, basement, geoelectric sounding.


2021 ◽  
Vol 873 (1) ◽  
pp. 012099
Author(s):  
Wahyu Hidayat ◽  
David P. Sahara ◽  
Sri Widiyantoro ◽  
I Putu Raditya Ambara Putra ◽  
Nabiel H. Shihab ◽  
...  

Abstract Hypocenter relocation is one of the keys to success in the analysis of seismicity induction in underground mines. Overburden thickness, topography, geological complexity, and mining activities can result in newly induced seismicity that can endanger the safety of underground mine workers. The relatively narrow underground mine area requires the most accurate hypocenter location information possible. The double-difference algorithm approach is one of the keys to overcoming this problem. The double-difference method is a relative location method that tries to minimize the residuals between the observed and calculated travel time differences for pairs of microseismic events at each station, by adjusting the differences between all pairs of events at each station repeatedly. In this study, we utilized microseismic measurement data in the deepest underground mine in Indonesia. A total of 1783 seismic events were successfully relocated. The relocation results show the rock mass stress which is illustrated by the distribution of events around the cave, especially the abutment area and underground mining tunnels.


2021 ◽  
Author(s):  
'Muyiwa Adekunle Adeyanju ◽  
Oluwaseun Victoria Fatoye ◽  
O.E Oyanameh

Abstract The study aims to integrate magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3-4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2021 ◽  
Author(s):  
Oluwaseun Victoria Fatoye ◽  
'Muyiwa Adekunle Adeyanju ◽  
O.E Oyanameh

Abstract The study aims to integrate magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3-4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2021 ◽  
Author(s):  
Oluwaseun Victoria Fatoye ◽  
O. E Oyanameh

Abstract This study aims at integration of magnetic and vertical electrical sounding (VES) resistivity methods to determine groundwater prospective in part of Aran-orin Sheet 224. A total of three traverses were established in the study area for the vertical electrical sounding using the Schlumberger electrode configuration. A total of 17 VES points was established using the ABEM Terrameter SAS 1000C model with maximum half-current electrode spacing (AB/2) of 120m. A total of eight traverses were established for the magnetics survey with station intervals of 10 m and inter-profile spacing of 100 m. The magnetic and VES data were qualitatively and quantitatively interpreted using IPI2WIN and OASIS MONTAJ package respectively. The geo-electric sections reveal a maximum of 3–4 layers beneath the sub-surface an overburden thickness ranges from 8.2 m to 64.9 m and the corresponding lithology inferred are topsoil, weathered Rock, fractured basement and fresh basement. The depth to basement using half-width method showed that the depth ranges from 8.4-56.04 m, which corresponds with the electrical survey.


2021 ◽  
pp. 1-45
Author(s):  
Oluwaseun S. Ogungbemi ◽  
John O. Amigun ◽  
Gbenga M. Olayanju ◽  
Ganiyu Badmus

Integrated airborne and ground geophysical studies were conducted in parts of Ilesha schist belt, southwestern Nigeria. The goal was to provide a useful guide for mineral prospecting, with the hope of considerably narrowing down the future search for mineral deposits within the study area. Aeromagnetic and aeroradiometric data were analyzed for the reconnaissance study. In addition, the reduction-to-equator transform, analytic signal, tilt derivative, and Euler deconvolution filters were applied to the aeromagnetic data to enhance shallow and deep geologic features. The aeroradiometric data were used to determine spatial variations in the concentrations of uranium (U), thorium (Th), and potassium (K) in near-surface rocks and to map spatial lithologic changes. The 2D-magnetic sections, radiometric profiles, inverted resistivity, and induced polarization (IP) sections were generated from the integrated geophysical data. The electrical resistivity tomography (ERT) results reveal the subsurface heterogeneity (to a depth of approximately 197 m) and varied geoelectric layers (topsoil, lateritic-clay, weathered rock, and basement rock). The IP sections show varying degrees of chargeability and features that suggest the presence of disseminated mineralized bodies concealed in some areas. The overburden thickness varies between 4 and 85 m as determined from the 2D-magnetic and electric resistivity sections. Anomalous peaks on profiles of elemental ratios (eTh/K, eTh/eU, and K/eU) correlate with the results of IP and ERT. Data sets are well correlated and highlight areas with relevant structural and lithologic signatures favorable for mineral deposition. The methodology adopted in our research is well adapted, and the interpretation techniques provided insight into regional and local lithostructural settings. These anomalous areas are suggested as targets for future exploration works.


2021 ◽  
Vol 14 (17) ◽  
Author(s):  
Xingui Zhang ◽  
Jiaxiong Zhu ◽  
Li’e Yan ◽  
Yi Zeng ◽  
Qingsheng Chen ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
A. A. Adepelumi ◽  
O. B. Olayiwola ◽  
D. E. Falebita ◽  
D. E. Falebita ◽  
O. Afolabi ◽  
...  

The need to accurately interpret geological models that approximate mineralized zones in a Basement Complex terrain necessitate the development of horizon loop electromagnetic method (HLEM) forward modeling solutions for such scenarios. The focus of the present work is on finding rapid forward modeling solutions for synthetic HLEM data as an aid in exploration for moderate to deep conductive mineral exploration targets.The main thrust is obtaining idealized HLEM models that are required for geological interpretation of the subsurface in such environment. The original HLEM equations developed by Wesley were extended to represent a horizontally stratified earth with a conductive approximated by shear zone. From these equations a computer program was written to calculate the HLEM responses for optimal conductor model with known values of coil separations (L), depth of burial (z) and angle of dip of the target.The thin conductive model was used because it is simple and suitable for different geological scenarios. The accuracy of the approximate forward solution has been confirmed for HLEM systems with various geometric ranges, frequencies and conductivities. Three models having varying overburden thickness, dip angle of target and source-receiver separation were used in the forward modeling. The effect of varying the dip angle,overburden thickness and coil separation was studied in all the three models used. The result obtained from the forward modeling showed that variation of the dip angle gave rise to changes in the amplitudes of the anomalies generated, while that of overburden and coil separation gave rise to changes in anomaly shape. Also, the geometry and position of the causative body were precisely delineated.


2021 ◽  
Vol 47 (2) ◽  
pp. 520-534
Author(s):  
Ayodele Kehinde Olawuyi

Hydrogeophysical study involving the use of Vertical Electrical Sounding (VES) was carried out in part of the basement complex rocks of Ilorin, central Nigeria, with the aim of determining its geoelectric parameters and groundwater potential. A total of thirty (30) VES were carried out using Schlumberger electrode configuration, with half electrode separation (AB/2) varying from 1m to 100m. Information on the subsurface lithologies, overburden thickness and aquiferous layers were obtained from the different VES locations in the study area. From the quantitative interpretations of the data collected, using the method of curve matching with the Orellana-Mooney master curves and 1-D forward modeling with WinResist 1.0 version software, three to five lithologic units were identified in the study. These include: the topsoil, sandy/lateritic clay/laterite, the weathered basement, the fractured basement and the fresh bedrock which are predominantly of the ‘KH’ curve type (30%), followed by ‘H’ type (26.7%), other type curves include ‘QH’ (16.7%), ‘HKH’, ‘HA’ and ‘A’ (6.7% each) and KQ and KQH (3.3% each). The weathered layer and the fractured basement constitute the main aquifer units. The aquifers are of generally low resistivity values (mostly below 100 Ω-m). The depths to dry bedrock at the chosen VES locations vary from 2.7 to 62.7 m with a mean value of 13.02 m in the study area. The geoelectrical interpretations of data obtained in these areas have permitted the delineation of the study area into low and moderate groundwater potential zones. This study is expected to assist in future planning for groundwater resources. Keywords: Hydrogeophysical, Basement Complex, Groundwater, Electrical Soundings, Weathered, Fractured


2021 ◽  
Vol 20 (1) ◽  
pp. 171-182
Author(s):  
S.A. Adekoya ◽  
H.T. Oladunjoye ◽  
J.O. Coker ◽  
O.A. Adenuga

The study presented the results obtained from estimation of the depth to the bsement bedrock (overburden thickness) in Olabisi Onabanjo University, Ago-Iwoye using two configurations of electrical resistivity methods. The study was aimed to delineate the stratigraphy and thicknesses of the subsurface layer present in the study area for comprehensive study of the lithostratigraphic information of the area. Vertical Electrical Sounding (VES) and 2-D Horizontal Electrical Profiling (HEP) techniques were used to obtain 1-D and 2-D subsurface resistivity images of the study area. The VES data were plotted manually on the Bi-log graph. The curve obtained was partially curve – matched to obtain the layer resistivities and thicknesses for further iteration. The 2-D resistivity imaging data were analyzed and processed to obtain the inverted (true) resistivity image. From the results, five (5) VES type curves weredelineated. These includes H, HA, QH and KH type. The geoelectric sections and 2-D resistivity images showed three to four geoelectric layers. These layers are topsoil/laterite, weathered basement, partly weathered/fractured basement and fresh basement. The study showed that materials with resistivity values that ranged between 10 and 298 Ωm and 152 and 589 Ωm representing clayey weathered layer and partly weathered/fractured basement were delineated beneath some sounding points. The clayey and weathered layer are indicative of soil formations that are inimical to foundation of civil engineering structure. Likewise, they can serve as reservoir for groundwater potential (if the porosity and permeability are high). Due to this, detailed lithostratigraphic evaluation through petrophysical analysis is encouraged for the purpose of mapping and correlation of the rock units before embarking on any engineering construction in the study area. The study concludes in providing assistance to subsequent research on the stratigraphic related studies in the area. Keywords: Geo-electric , Stratigraphy, Lithology, Layer,


Sign in / Sign up

Export Citation Format

Share Document