Applications of nuclear magnetic resonance (NMR) logging in tight sandstone reservoir pore structure characterization

2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Haitao Zhang ◽  
Gaoren Li ◽  
Haopeng Guo ◽  
Wenjing Zhang ◽  
Yanmei Wang ◽  
...  
Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. D11-D21 ◽  
Author(s):  
Xinmin Ge ◽  
Yiren Fan ◽  
Xuejuan Zhu ◽  
Yiguo Chen ◽  
Runze Li

The cutoff value of nuclear magnetic resonance (NMR) transversal relaxation time [Formula: see text] is vital for pore structure characterization, permeability prediction, and irreducible water saturation calculation. Conventional default values often lead to inaccurate results for rocks with complex pore structure. Based on NMR experiments and multifractal theory, we have developed an effective statistical method to predict [Formula: see text] cutoff values without other petrophysical information. The method is based on multifractal theory to analyze the NMR [Formula: see text] spectrum with the assumption that the [Formula: see text] spectrum is an indicator of pore size distribution. Multifractal parameters, such as multifractal dimension, singularity strength, and mass exponent, are calculated to investigate the multifractal behavior of [Formula: see text] spectrum via NMR experiments and a dyadic scaling-down algorithm. To obtain the optimal [Formula: see text] cutoff value, the rotation speed and time of centrifugation are enlarged increasingly to optimal centrifugal state. A predicating model for [Formula: see text] cutoff value based on multiple linear regressions of multifractal parameters was proposed after studying the influential factors. On the basis of the multifractal analysis of NMR [Formula: see text] spectrum, a reasonable predication model for [Formula: see text] cutoff value was rendered. Upon testing, the predicted results were highly consistent with the experimental results.


2020 ◽  
Vol 8 (4) ◽  
pp. 1135-1148 ◽  
Author(s):  
Yunbing Hu ◽  
Yinghai Guo ◽  
Junjian Zhang ◽  
Jingwen Shangguan ◽  
Mi Li ◽  
...  

SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 750-761 ◽  
Author(s):  
Haitao Wang ◽  
Zengmin Lun ◽  
Chengyuan Lv ◽  
Dongjiang Lang ◽  
Weiyi Pan ◽  
...  

Summary Nuclear magnetic resonance (NMR) was used to investigate the exposure between carbon dioxide (CO2) and the sandstone matrix with a permeability of 0.218 md and a porosity of 9.5% at 40°C and 12 MPa (immiscible condition). Minimum miscibility pressure (MMP) between oil and CO2 was 17.8 MPa, determined by slimtube test at 40°C. The exposure process between CO2 and the sandstone matrix included first, second, third, and fourth exposure experiments. Before each exposure experiment started, there was a CO2-injection stage with a CO2 injection under a constant pressure of 12 MPa and at a constant rate to keep fresh CO2 (concentration of CO2 is 100% in gas phase) in the system. Each exposure experiment ended when the obtained T2 spectrum was unchanged (total amount of oil in tight matrix remains constant). These processes were similar to CO2 huff ’n’ puff. The results showed that (1) oil in all pores could mobilize as exposure time increases in the first exposure experiment. (2) The total original-oil-in-place (OOIP) recovery is 46.6% for oil in big pores (29 ms < T2 ≤ 645 ms)—this result is higher than the recovery (12.8%) for oil in small pores (T2 ≤ 29 ms). (3) Oil is mobilized fast in the initial exposure hours, and then the rate drops gradually until no more oil is produced. (4) Initially, the oil exists in pores with maximum relaxation times of 645 ms in the originally saturated core. After the CO2 injection, oil flows to pores with relaxation times slower than 645 ms, suggesting that oil in tight matrix is mobilized to the surface of core by swelling caused by CO2 diffusion. (5) The final OOIP recoveries of first, second, third, and fourth exposure experiments are 23.7, 7.2, 2.6, and 1.5%, respectively, and they decline exponentially. Oil mobilization in a tight-sandstone reservoir exposed to CO2 was observed by NMR T2 spectra under multiple exposure experiments. Mechanisms of oil mobilization were investigated (i.e., oil swelling, concentration-driven diffusion of hydrocarbons, and extraction of light components). The CO2 enhanced oil recovery (EOR) with multiple injections under immiscible conditions is acceptable and satisfactory in a tight-sandstone reservoir. CO2 huff ’n’ puff with optimized injection, soaking, and production process is an economic development method in a tight sandstone reservoir.


Sign in / Sign up

Export Citation Format

Share Document