Changes in urban vegetation cover and analysis of the influencing factors: a case study of Harbin, Heilongjiang Province, China

2020 ◽  
Vol 13 (19) ◽  
Author(s):  
Zhihan Wan ◽  
Wei Gao
2021 ◽  
Vol 10 (11) ◽  
pp. 760
Author(s):  
Husheng Fang ◽  
Moquan Sha ◽  
Wenjuan Lin ◽  
Dai Qiu ◽  
Zongyao Sha

Green vegetation plays a vital role in urban ecosystem services. Rapid urbanization often tends to induce urban vegetation cover fragmentation (UVCF) in cities and suburbs. Mapping the changes in the structure (aggregation) and abundance of urban vegetation cover helps to make improved policies for sustainable urban development. In this paper, a new distance-based landscape indicator to UVCF, Frag, was proposed first. Unlike many other landscape indicators, Frag measures UVCF by considering simultaneously both the structure and abundance of vegetation cover at local scales, and thus provides a more comprehensive perspective in understanding the spatial distribution patterns in urban greenness cover. As a case study, the urban greenness fragmentation indicated by Frag was demonstrated in Wuhan metropolitan area (WMA), China in 2015 and 2020. Support vector machine (SVM) was then designed to examine the impact on the Frag changes from the associated factors, including urbanization and terrain characteristics (elevation and slope). The Frag changes were mapped at different scales and modeled by SVM from the selected factors, which reasonably explained the Frag changes. Sensitivity analysis for the SVM model revealed that urbanization showed the most dominant factor for the Frag changes, followed by terrain elevation and slope. We conclude that Frag is an effective scale-dependent indicator to UVCF that can reflect changes in the structure and abundance of urban vegetation cover, and that modeling the impact of the associated factors on UVCF via the Frag indicator can provide essential information for urban planners.


Sensors ◽  
2008 ◽  
Vol 8 (6) ◽  
pp. 3880-3902 ◽  
Author(s):  
Tim Van de Voorde ◽  
Jeroen Vlaeminck ◽  
Frank Canters

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 673
Author(s):  
Chen Yang ◽  
Meichen Fu ◽  
Dingrao Feng ◽  
Yiyu Sun ◽  
Guohui Zhai

Vegetation plays a key role in ecosystem regulation and influences our capacity for sustainable development. Global vegetation cover has changed dramatically over the past decades in response to both natural and anthropogenic factors; therefore, it is necessary to analyze the spatiotemporal changes in vegetation cover and its influencing factors. Moreover, ecological engineering projects, such as the “Grain for Green” project implemented in 1999, have been introduced to improve the ecological environment by enhancing forest coverage. In our study, we analyzed the changes in vegetation cover across the Loess Plateau of China and the impacts of influencing factors. First, we analyzed the latitudinal and longitudinal changes in vegetation coverage. Second, we displayed the spatiotemporal changes in vegetation cover based on Theil-Sen slope analysis and the Mann-Kendall test. Third, the Hurst exponent was used to predict future changes in vegetation coverage. Fourth, we assessed the relationship between vegetation cover and the influence of individual factors. Finally, ordinary least squares regression and the geographically weighted regression model were used to investigate the influence of various factors on vegetation cover. We found that the Loess Plateau showed large-scale greening from 2000 to 2015, though some regions showed decreasing vegetation cover. Latitudinal and longitudinal changes in vegetation coverage presented a net increase. Moreover, some areas of the Loess Plateau are at risk of degradation in the future, but most areas showed a sustainable increase in vegetation cover. Temperature, precipitation, gross domestic product (GDP), slope, cropland percentage, forest percentage, and built-up land percentage displayed different relationships with vegetation cover. Geographically weighted regression model revealed that GDP, temperature, precipitation, forest percentage, cropland percentage, built-up land percentage, and slope significantly influenced (p < 0.05) vegetation cover in 2000. In comparison, precipitation, forest percentage, cropland percentage, and built-up land percentage significantly affected (p < 0.05) vegetation cover in 2015. Our results enhance our understanding of the ecological and environmental changes in the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document