Real-time static Poisson’s ratio prediction of vertical complex lithology from drilling parameters using artificial intelligence models

2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Ashraf Ahmed ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osama Siddig ◽  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

AbstractRock elastic properties such as Poisson’s ratio influence wellbore stability, in-situ stresses estimation, drilling performance, and hydraulic fracturing design. Conventionally, Poisson’s ratio estimation requires either laboratory experiments or derived from sonic logs, the main concerns of these methods are the data and samples availability, costs, and time-consumption. In this paper, an alternative real-time technique utilizing drilling parameters and machine learning was presented. The main added value of this approach is that the drilling parameters are more likely to be available and could be collected in real-time during drilling operation without additional cost. These parameters include weight on bit, penetration rate, pump rate, standpipe pressure, and torque. Two machine learning algorithms were used, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To train and test the models, 2905 data points from one well were used, while 2912 data points from a different well were used for model validation. The lithology of both wells contains carbonate, sandstone, and shale. Optimization on different tuning parameters in the algorithm was conducted to ensure the best prediction was achieved. A good match between the actual and predicted Poisson’s ratio was achieved in both methods with correlation coefficients between 0.98 and 0.99 using ANN and between 0.97 and 0.98 using ANFIS. The average absolute percentage error values were between 1 and 2% in ANN predictions and around 2% when ANFIS was used. Based on these results, the employment of drilling data and machine learning is a strong tool for real-time prediction of geomechanical properties without additional cost.


2021 ◽  
pp. 1-15
Author(s):  
Osama Sidddig ◽  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

Abstract Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in-situ stresses, and design of hydraulic fracturing. One of these properties is Poisson's ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming and doesn't provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real-time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration, weight on bit and torque. Three machine-learning methods were utilized, support vector machine (SVM), functional network (FN) and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed.The three machine learning tools provided good estimations, however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Albert T. Young ◽  
Kristen Fernandez ◽  
Jacob Pfau ◽  
Rasika Reddy ◽  
Nhat Anh Cao ◽  
...  

AbstractArtificial intelligence models match or exceed dermatologists in melanoma image classification. Less is known about their robustness against real-world variations, and clinicians may incorrectly assume that a model with an acceptable area under the receiver operating characteristic curve or related performance metric is ready for clinical use. Here, we systematically assessed the performance of dermatologist-level convolutional neural networks (CNNs) on real-world non-curated images by applying computational “stress tests”. Our goal was to create a proxy environment in which to comprehensively test the generalizability of off-the-shelf CNNs developed without training or evaluation protocols specific to individual clinics. We found inconsistent predictions on images captured repeatedly in the same setting or subjected to simple transformations (e.g., rotation). Such transformations resulted in false positive or negative predictions for 6.5–22% of skin lesions across test datasets. Our findings indicate that models meeting conventionally reported metrics need further validation with computational stress tests to assess clinic readiness.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xinran Wang ◽  
Liang Wang ◽  
Hong Bu ◽  
Ningning Zhang ◽  
Meng Yue ◽  
...  

AbstractProgrammed death ligand-1 (PD-L1) expression is a key biomarker to screen patients for PD-1/PD-L1-targeted immunotherapy. However, a subjective assessment guide on PD-L1 expression of tumor-infiltrating immune cells (IC) scoring is currently adopted in clinical practice with low concordance. Therefore, a repeatable and quantifiable PD-L1 IC scoring method of breast cancer is desirable. In this study, we propose a deep learning-based artificial intelligence-assisted (AI-assisted) model for PD-L1 IC scoring. Three rounds of ring studies (RSs) involving 31 pathologists from 10 hospitals were carried out, using the current guideline in the first two rounds (RS1, RS2) and our AI scoring model in the last round (RS3). A total of 109 PD-L1 (Ventana SP142) immunohistochemistry (IHC) stained images were assessed and the role of the AI-assisted model was evaluated. With the assistance of AI, the scoring concordance across pathologists was boosted to excellent in RS3 (0.950, 95% confidence interval (CI): 0.936–0.962) from moderate in RS1 (0.674, 95% CI: 0.614–0.735) and RS2 (0.736, 95% CI: 0.683–0.789). The 2- and 4-category scoring accuracy were improved by 4.2% (0.959, 95% CI: 0.953–0.964) and 13% (0.815, 95% CI: 0.803–0.827) (p < 0.001). The AI results were generally accepted by pathologists with 61% “fully accepted” and 91% “almost accepted”. The proposed AI-assisted method can help pathologists at all levels to improve the PD-L1 assay (SP-142) IC assessment in breast cancer in terms of both accuracy and concordance. The AI tool provides a scheme to standardize the PD-L1 IC scoring in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document