Tectono-sedimentary evolution of eastern Algerian alpine foreland during Middle to Late Jurassic

2021 ◽  
Vol 14 (23) ◽  
Author(s):  
Youcef Brahim El Hadj ◽  
Chadi Mohammed ◽  
Mazouz El-Hadi ◽  
Marmi Ramdane ◽  
Djeffal Rami ◽  
...  
2014 ◽  
Vol 93 (4) ◽  
pp. 147-174 ◽  
Author(s):  
Jashar Arfai ◽  
Fabian Jähne ◽  
Rüdiger Lutz ◽  
Dieter Franke ◽  
Christoph Gaedicke ◽  
...  

AbstractThe results of a detailed seismic mapping campaign of 13 horizons in the northwestern German North Sea, covering Late Permian to Palaeogene sedimentary successions, are presented. Based on the interpretation of four 3D and two 2D seismic surveys, thickness and depth maps of prominent stratigraphic units were constructed. These maps provide an overview of key structural elements, the sedimentation and erosion, and give insights into the evolution of the German Central Graben. The base of the Zechstein Group reaches a maximum depth of 7800 m within the German Central Graben. Lateral thickness variations in the Zechstein reflect the extensive mobilisation of Zechstein salt. Complex rift-related structures, with the Central Graben as the main structural element, were found not later than the Early Triassic. Up to 3000-m thick Triassic sediments are preserved in the eastern German Central Graben of which 1800 m consist of Keuper sediments. The Lower Buntsandstein unit shows increasing thicknesses towards the southeastern study area, likely related to distinct lateral subsidence. As a consequence of uplift of the North Sea Dome, Middle Jurassic sediments were eroded in large parts of the northwestern German North Sea and are only preserved in the German Central Graben. The NNW–SSE oriented John Basin is another important structural element, which shows maximum subsidence during the Late Jurassic. In most parts of the study area Lower Cretaceous sediments are absent due to either erosion or non-deposition. Lower Cretaceous deposits are preserved in the Outer Rough Basin in the northwest and within the German Central Graben. Upper Cretaceous sediments are found at depths between 1500 and 3600 m, reaching a maximum thickness of approximately 1600 m on the Schillgrund High. Contraction and inversion of pre-existing Mesozoic faults during the Late Cretaceous is distinct at the Schillgrund Fault, i.e. the eastern border fault of the Central Graben. The Palaeogene is predominantly a period of strong basin subsidence. Within 37 Myrs, up to 1400 m of Palaeogene sediments were deposited in the northwesternmost part of the study area. Detailed mapping of salt structures enables a reconstruction of halokinetic movements over time and a deciphering of the influence of the Zechstein salt on the sedimentary evolution during the Mesozoic and Cenozoic. Increasing sediment thicknesses in rim-synclines indicate that most of the salt structures in the German Central Graben had their main growth phase during the Late Jurassic.


1992 ◽  
Vol 129 (4) ◽  
pp. 385-400 ◽  
Author(s):  
Gregory Jones ◽  
Patrick de Wever ◽  
Alastair H. F. Robertson

AbstractRadiolarians were extracted from siliceous sediments of the northern Pindos Mountains, in an attempt to establish the chronology of tectonic and stratigraphic events related to the evolution of the Pindos ocean basin. Three separate phases of siliceous sedimentation were identified: (i) (mid-) late Triassic; (ii) mid-late Jurassic and (iii) mid-late Cretaceous. The first two phases are also known from the Pindos and Sub-Pelagonian zones of southern and central Greece, and elsewhere in the Dinarides andHellenides. However, the occurrence of Cretaceous radiolarites in the west central Tethyan region is somewhat unusual. Field observations suggest thatfrom the mid-late Triassic through to the mid Jurassic, radiolarites were deposited on volcanic basement, or were interbedded with sediments associated with the late rifting/spreading stages in the development of the Pindos ocean. Radiolarites of mid-late Jurassic age are commonly interbedded with clastic sediments of ophiolitic derivation. This coincides with a phase of significant compression within the Hellenides, which caused intra-oceanic deformation of the Pindos ophiolite. The ophiolite was subsequently emplaced onto the margin of the Pelagonian microcontinent in latest Jurassic time (Kim-meridgian-early Tithonian), as evidenced by transgressive marine carbonates. However, the Pindos basin survived in reduced form until the early Tertiary, allowing radiolarites to accumulate again within Cretaceous post-tectonic clastic sequences.


2020 ◽  
Vol 157 (8) ◽  
pp. 1238-1264
Author(s):  
Giuseppe Nirta ◽  
Martin Aberhan ◽  
Valerio Bortolotti ◽  
Nicolaos Carras ◽  
Francesco Menna ◽  
...  

AbstractAlong the Dinaric–Hellenic orogen, the Late Jurassic – Early Cretaceous ophiolite obduction over the Adria continental margin was sealed by sedimentation of clastic terrestrial deposits rapidly followed by a widespread carbonate platform system since the Early Cretaceous period. These Cretaceous sediments presently crop out over areas of varying extension, from several hundred kilometre wide undeformed continuous covers to small-scale tectonic slivers involved in the tectonic stack following the latest Cretaceous–Palaeogene collision. These deposits are unconformably sedimented above the units formed by the Late Jurassic to Early Cretaceous nappe stacking above the eastern Adria continental margin. We studied these deposits in a large area between western Serbia and eastern Bosnia. In the studied area, these deposits are divided into three lithostratigraphic groups according to their age, depositional environment and type of underlying basement. The Mokra Gora Group sediments (upper Aptian–Maastrichtian) were deposited on top of previously obducted and weathered ophiolites, the Kosjerić Group (Cenomanian–Campanian) overlies composite tectonic units comprising obducted ophiolites and their underlying continental basement portions, while the Guča Group (Campanian–Maastrichtian) exclusively rests on top of continental basement. The reconstructed sedimentary evolution of these groups, together with the comparison with the syn- and post-obduction deposits at the front of the ophiolitic nappe(s) in a wider area of the internal Dinarides (e.g. Pogari Group and Bosnian flysch), allowed us to clarify the obduction mechanisms, including their tectonic context, the changes in depositional environments and the timing of depositional and tectonic events, and, in a wider view, shed light on the geodynamic evolution of the Dinaric belt.


2015 ◽  
Vol 65 (3) ◽  
pp. 319-344 ◽  
Author(s):  
Nestor Oszczypko ◽  
Andrzej Ślączka ◽  
Marta Oszczypko-Clowes ◽  
Barbara Olszewska

Abstract In the Late Jurassic to Early Cretaceous palaeogeography of the Alpine Tethys the term Ocean is used for different parts of these sedimentary areas: eg. Ligurian – Piedmont and Penninic, Magura, Pieniny, Valais and Ceahlau-Severins oceans. The Magura Ocean occupied the more northern position in the Alpine-Carpathian arc. During the Late Cretaceous–Paleogene tectono-sedimentary evolution the Magura Ocean was transformed into several (Magura, Dukla, Silesian, sub-Silesian and Skole) basins and intrabasinal source area ridges now incorporated into the Outer Western Carpathians.


2018 ◽  
Vol 97 ◽  
pp. 437-465 ◽  
Author(s):  
Mehdi Carmeille ◽  
Raphaël Bourillot ◽  
Marie-Françoise Brunet ◽  
Pierre Pellenard ◽  
Franz T. Fürsich ◽  
...  

2019 ◽  
Vol 23 (4) ◽  
pp. 291 ◽  
Author(s):  
Gang Li ◽  
Atsushi Matsuoka ◽  
Qun Yang ◽  
Jingeng Sha

2017 ◽  
Author(s):  
Suzanne D. Craddock ◽  
◽  
Thomas D. Hoisch ◽  
Michael Wells ◽  
Katrina M. Sauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document