Petrophysical characteristics and reservoir quality evaluation of deep water turbidite sandstones of the Mount Messenger Formation, New Zealand

2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Surya Tejasvi Thota ◽  
Mohamed Ragab Shalaby ◽  
Md Aminul Islam
2021 ◽  
pp. 014459872199851
Author(s):  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Junfeng Shi ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.


2021 ◽  
Author(s):  
◽  
Jan Robert Baur

<p>This study investigates the nature, origin, and distribution of Cretaceous to Recent sediment fill in the offshore Taranaki Basin, western New Zealand. Seismic attributes and horizon interpretations on 30,000 km of 2D seismic reflection profiles and three 3D seismic surveys (3,000 km²) are used to image depositional systems and reconstruct paleogeography in detail and regionally, across a total area of ~100,000 km² from the basin's present-day inner shelf to deep water. These data are used to infer the influence of crustal tectonics and mantle dynamics on the development of depocentres and depositional pathways. During the Cretaceous to Eocene period the basin evolved from two separate rifts into a single broad passive margin. Extensional faulting ceased before 85 Ma in the present-day deep-water area of the southern New Caledonia Trough, but stretching of the lithosphere was higher (β=1.5-2) than in the proximal basin (β<1.5), where faulting continued into the Paleocene (~60 Ma). The resulting differential thermal subsidence caused northward tilting of the basin and influenced the distribution of sedimentary facies in the proximal basin. Attribute maps delineate the distribution of the basin's main petroleum source and reservoir facies, from a ~20,000 km²-wide, Late Cretaceous coastal plain across the present-day deep-water area, to transgressive shoreline belts and coastal plains in the proximal basin. Rapid subsidence began in the Oligocene and the development of a foredeep wedge through flexural loading of the eastern boundary of Taranaki Basin is tracked through the Middle Miocene. Total shortening within the basin was minor (5-8%) and slip was mostly accommodated on the basin-bounding Taranaki Fault Zone, which detached the basin from much greater Miocene plate boundary deformation further east. The imaging of turbidite facies and channels associated with the rapidly outbuilding shelf margin wedge illustrates the development of large axial drainage systems that transported sediment over hundreds of kilometres from the shelf to the deep-water basin since the Middle Miocene. Since the latest Miocene, south-eastern Taranaki Basin evolved from a compressional foreland to an extensional (proto-back-arc) basin. This structural evolution is characterised by: 1) cessation of intra-basinal thrusting by 7-5 Ma, 2) up to 700 m of rapid (>1000 m/my) tectonic subsidence in 100-200 km-wide, sub-circular depocentres between 6-4 Ma (without significant upper-crustal faulting), and 3) extensional faulting since 3.5-3 Ma. The rapid subsidence in the east caused the drastic modification of shelf margin geometry and sediment dispersal directions. Time and space scales of this subsidence point to lithospheric or asthenospheric mantle modification, which may be a characteristic process during back-arc basin development. Unusual downward vertical crustal movements of >1 km, as inferred from seismic facies, paleobathymetry and tectonic subsidence analysis, have created the present-day Deepwater Taranaki Basin physiography, but are not adequately explained by simple rift models. It is proposed that the distal basin, and perhaps even the more proximal Taranaki Paleogene passive margin, were substantially modified by mantle processes related to the initiation of subduction on the fledgling Australia-Pacific plate boundary north of New Zealand in the Eocene.</p>


2021 ◽  
Author(s):  
Anton Khitrenko ◽  
Adelia Minkhatova ◽  
Vladimir Orlov ◽  
Dmitriy Kotunov ◽  
Salavat Khalilov

Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.


Sign in / Sign up

Export Citation Format

Share Document