The uses of geophysical methods in hydrogeological study of Grombalia plain (Northeastern Tunisia)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Amani Ben Chouchene ◽  
Fethi Lachaal ◽  
Lahcen Zouhri ◽  
Achref Boualaares ◽  
Hakim Gabtni
2021 ◽  
Vol 298 ◽  
pp. 05003
Author(s):  
Hassnae Faiz ◽  
Anasse Benslimane ◽  
Mohamed Chibout ◽  
Mohamed El Mokhtar ◽  
Fatima Zahra Faqihi ◽  
...  

The present work contributes to the multidisciplinary geological, hydrogeological, and geophysical exploration of groundwater in the Bir Tam-Tam region of the Fez-Taza corridor. Our main objective is to release water resources in our study area to supply drinking water in the region and irrigation of agricultural areas. Potential zones are located at the Lias fracturing zones. This study is interested in understanding the hydrogeological context of the study area through geophysical methods such as Electrical Tomography. The comparison of geological data, Drilling data, and the interpretation of the results of electrical Tomography have made it possible to highlight the geoelectric levels likely to constitute a potential aquifer and to locate possible structural accidents (faults) affecting the dolomitic limestone formations of Lias that could drain groundwater.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


Geotecnia ◽  
2016 ◽  
Vol 137 ◽  
pp. 141-155
Author(s):  
Herson Oliveira da Rocha ◽  
◽  
Lúcia Maria Costa e Silva ◽  
João Andrade dos Reis Júnior ◽  
◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 204-212
Author(s):  
Heru Sri Naryanto ◽  
Puspa Khaerani ◽  
Syakira Trisnafiah ◽  
Achmad Fakhrus Shomim ◽  
Wisyanto Wisyanto ◽  
...  

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari air tanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari air tanah, maka diperlukan data dan informasi mengenai kondisi potensi air tanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi air tanahnya. Keberadaan air tanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer air tanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung air tanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan air tanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer air tanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi air tanah, Geostech  


2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


2017 ◽  
Author(s):  
Elliot Grunewald ◽  
◽  
Neil Terry ◽  
Martin A. Briggs ◽  
Andrew M. Kass ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document