Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning

2020 ◽  
Vol 12 (2) ◽  
pp. 117-130
Author(s):  
Xiaoshu Zhu ◽  
Jie Zhang ◽  
Yunpei Xu ◽  
Jianxin Wang ◽  
Xiaoqing Peng ◽  
...  
2018 ◽  
Author(s):  
Samuel L. Wolock ◽  
Romain Lopez ◽  
Allon M. Klein

AbstractSingle-cell RNA-sequencing has become a widely used, powerful approach for studying cell populations. However, these methods often generate multiplet artifacts, where two or more cells receive the same barcode, resulting in a hybrid transcriptome. In most experiments, multiplets account for several percent of transcriptomes and can confound downstream data analysis. Here, we present Scrublet (Single-Cell Remover of Doublets), a framework for predicting the impact of multiplets in a given analysis and identifying problematic multiplets. Scrublet avoids the need for expert knowledge or cell clustering by simulating multiplets from the data and building a nearest neighbor classifier. To demonstrate the utility of this approach, we test Scrublet on several datasets that include independent knowledge of cell multiplets.


2021 ◽  
Author(s):  
Ziheng Zou ◽  
Kui Hua ◽  
Xuegong Zhang

AbstractClustering is a key step in revealing heterogeneities in single-cell data. Cell heterogeneity can be explored at different resolutions and the resulted varying cell states are inherently nested. However, most existing single-cell clustering methods output a fixed number of clusters without the hierarchical information. Classical hierarchical clustering provides dendrogram of cells, but cannot scale to large datasets due to the high computational complexity. We present HGC, a fast Hierarchical Graph-based Clustering method to address both problems. It combines the advantages of graph-based clustering and hierarchical clustering. On the shared nearest neighbor graph of cells, HGC constructs the hierarchical tree with linear time complexity. Experiments showed that HGC enables multiresolution exploration of the biological hierarchy underlying the data, achieves state-of-the-art accuracy on benchmark data, and can scale to large datasets. HGC is freely available for academic use at https://www.github.com/XuegongLab/[email protected], [email protected]


2021 ◽  
Vol 1738 ◽  
pp. 012078
Author(s):  
Yaxuan Cui ◽  
Kunjie Luo ◽  
Zheyu Zhang ◽  
Saijia Liu

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ryan B. Patterson-Cross ◽  
Ariel J. Levine ◽  
Vilas Menon

Abstract Background Generating and analysing single-cell data has become a widespread approach to examine tissue heterogeneity, and numerous algorithms exist for clustering these datasets to identify putative cell types with shared transcriptomic signatures. However, many of these clustering workflows rely on user-tuned parameter values, tailored to each dataset, to identify a set of biologically relevant clusters. Whereas users often develop their own intuition as to the optimal range of parameters for clustering on each data set, the lack of systematic approaches to identify this range can be daunting to new users of any given workflow. In addition, an optimal parameter set does not guarantee that all clusters are equally well-resolved, given the heterogeneity in transcriptomic signatures in most biological systems. Results Here, we illustrate a subsampling-based approach (chooseR) that simultaneously guides parameter selection and characterizes cluster robustness. Through bootstrapped iterative clustering across a range of parameters, chooseR was used to select parameter values for two distinct clustering workflows (Seurat and scVI). In each case, chooseR identified parameters that produced biologically relevant clusters from both well-characterized (human PBMC) and complex (mouse spinal cord) datasets. Moreover, it provided a simple “robustness score” for each of these clusters, facilitating the assessment of cluster quality. Conclusion chooseR is a simple, conceptually understandable tool that can be used flexibly across clustering algorithms, workflows, and datasets to guide clustering parameter selection and characterize cluster robustness.


Author(s):  
Emma Dann ◽  
Neil C. Henderson ◽  
Sarah A. Teichmann ◽  
Michael D. Morgan ◽  
John C. Marioni

2020 ◽  
Author(s):  
Snehalika Lall ◽  
Abhik Ghosh ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

ABSTRACTMany single-cell typing methods require pure clustering of cells, which is susceptible towards the technical noise, and heavily dependent on high quality informative genes selected in the preliminary steps of downstream analysis. Techniques for gene selection in single-cell RNA sequencing (scRNA-seq) data are seemingly simple which casts problems with respect to the resolution of (sub-)types detection, marker selection and ultimately impacts towards cell annotation. We introduce sc-REnF, a novel and robust entropy based feature (gene) selection method, which leverages the landmark advantage of ‘Renyi’ and ‘Tsallis’ entropy achieved in their original application, in single cell clustering. Thereby, gene selection is robust and less sensitive towards the technical noise present in the data, producing a pure clustering of cells, beyond classifying independent and unknown sample with utmost accuracy. The corresponding software is available at: https://github.com/Snehalikalall/sc-REnF


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunxiang Wang ◽  
Xin Gao ◽  
Juntao Liu

Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data. Results We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3. Conclusion The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.


Sign in / Sign up

Export Citation Format

Share Document