Fault-tolerant Controller Design for Active Suspension System with Proportional Differential Sliding Mode Observer

2019 ◽  
Vol 17 (7) ◽  
pp. 1751-1761 ◽  
Author(s):  
Bin Lin ◽  
Xiaoyu Su
Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


2019 ◽  
Vol 9 (20) ◽  
pp. 4453 ◽  
Author(s):  
I-Hsum Li ◽  
Lian-Wang Lee

A pneumatic muscle is a cheap, clean, and high-power active actuator. However, it is difficult to control due to its inherent nonlinearity and time-varying characteristics. This paper presents a pneumatic muscle active suspension system (PM-ASS) for vehicles and uses an experimental study to analyze its stability and accuracy in terms of reducing vibration. In the PM-ASS, the pneumatic muscle actuator is designed in parallel with two MacPherson struts to provide a vertical force between the chassis and the wheel. This geometric arrangement allows the PM-ASS to produce the maximum force to counter road vibration and make the MacPherson struts generate significant improvement. In terms of the controller design, this paper uses an adaptive Fourier neural network sliding-mode controller with H ∞ tracking performance for the PM-ASS, which confronts nonlinearities and time-varying characteristics. A state-predictor is used to predict the output error and to provide the predictions for the controller. Experiments with a rough concave-convex road and a two-bump excitation road use a quarter-car test rig to verify the practical feasibility of the PM-ASS, and the results show that the PM-ASS gives an improvement the ride comfort.


2021 ◽  
pp. 107754632110466
Author(s):  
Haohan Yang ◽  
Qingwei Liu ◽  
Yongchao Zhang ◽  
Fan Yu

This paper investigates an improved adaptive sliding mode fault-tolerant control strategy for a magnetorheological semi-active suspension system with parametric uncertainties and actuator faults. Using the experimental data collected by a quarter-vehicle test rig, an adaptive-network-based fuzzy inference system is employed to establish a learning-based magnetorheological damper model firstly. The Takagi-Sugeno fuzzy approach is introduced to deal with the uncertainties of sprung mass and pitch rotary inertia and then the corresponding Takagi-Sugeno faulty semi-active suspension system is constructed. An adaptive sliding mode fault-tolerant controller is proposed, in which the magnetorheological damper fault gain is observed by the designed estimation law, and the asymptotical stability of the system is further analyzed. Finally, numerical simulation tests are conducted to demonstrate the effectiveness of the designed control scheme.


Sign in / Sign up

Export Citation Format

Share Document