scholarly journals Use of Neural Signals to Evaluate the Quality of Generative Adversarial Network Performance in Facial Image Generation

2019 ◽  
Vol 12 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Zhengwei Wang ◽  
Graham Healy ◽  
Alan F. Smeaton ◽  
Tomás E. Ward
Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 166060
Author(s):  
Yangdi Hu ◽  
Zhengdong Cheng ◽  
Xiaochun Fan ◽  
Zhenyu Liang ◽  
Xiang Zhai

2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


Proceedings ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 17
Author(s):  
Andrea Giussani

In the last decade, advances in statistical modeling and computer science have boosted the production of machine-produced contents in different fields: from language to image generation, the quality of the generated outputs is remarkably high, sometimes better than those produced by a human being. Modern technological advances such as OpenAI’s GPT-2 (and recently GPT-3) permit automated systems to dramatically alter reality with synthetic outputs so that humans are not able to distinguish the real copy from its counteracts. An example is given by an article entirely written by GPT-2, but many other examples exist. In the field of computer vision, Nvidia’s Generative Adversarial Network, commonly known as StyleGAN (Karras et al. 2018), has become the de facto reference point for the production of a huge amount of fake human face portraits; additionally, recent algorithms were developed to create both musical scores and mathematical formulas. This presentation aims to stimulate participants on the state-of-the-art results in this field: we will cover both GANs and language modeling with recent applications. The novelty here is that we apply a transformer-based machine learning technique, namely RoBerta (Liu et al. 2019), to the detection of human-produced versus machine-produced text concerning fake news detection. RoBerta is a recent algorithm that is based on the well-known Bidirectional Encoder Representations from Transformers algorithm, known as BERT (Devlin et al. 2018); this is a bi-directional transformer used for natural language processing developed by Google and pre-trained over a huge amount of unlabeled textual data to learn embeddings. We will then use these representations as an input of our classifier to detect real vs. machine-produced text. The application is demonstrated in the presentation.


2021 ◽  
Author(s):  
Jialu Huang ◽  
Ying Huang ◽  
Yan-ting Lin ◽  
Zi-yang Liu ◽  
Yang Lin ◽  
...  

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


2021 ◽  
Author(s):  
Takumi Hase ◽  
Megumi Nakao ◽  
Keiho Imanishi ◽  
Mitsuhiro Nakamura ◽  
Tetsuya Matsuda

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1810
Author(s):  
Dat Tien Nguyen ◽  
Tuyen Danh Pham ◽  
Ganbayar Batchuluun ◽  
Kyoung Jun Noh ◽  
Kang Ryoung Park

Although face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems. In this paper, we propose a method for artificially generating presentation attack face images by learning the characteristics of real and presentation attack images using a few captured images. As a result, our proposed method helps save time in collecting presentation attack samples for training PAD systems and possibly enhance the performance of PAD systems. Our study is the first attempt to generate PA face images for PAD system based on CycleGAN network, a deep-learning-based framework for image generation. In addition, we propose a new measurement method to evaluate the quality of generated PA images based on a face-PAD system. Through experiments with two public datasets (CASIA and Replay-mobile), we show that the generated face images can capture the characteristics of presentation attack images, making them usable as captured presentation attack samples for PAD system training.


2021 ◽  
Vol 13 (19) ◽  
pp. 3971
Author(s):  
Wenxiang Chen ◽  
Yingna Li ◽  
Zhengang Zhao

Insulator detection is one of the most significant issues in high-voltage transmission line inspection using unmanned aerial vehicles (UAVs) and has attracted attention from researchers all over the world. The state-of-the-art models in object detection perform well in insulator detection, but the precision is limited by the scale of the dataset and parameters. Recently, the Generative Adversarial Network (GAN) was found to offer excellent image generation. Therefore, we propose a novel model called InsulatorGAN based on using conditional GANs to detect insulators in transmission lines. However, due to the fixed categories in datasets such as ImageNet and Pascal VOC, the generated insulator images are of a low resolution and are not sufficiently realistic. To solve these problems, we established an insulator dataset called InsuGenSet for model training. InsulatorGAN can generate high-resolution, realistic-looking insulator-detection images that can be used for data expansion. Moreover, InsulatorGAN can be easily adapted to other power equipment inspection tasks and scenarios using one generator and multiple discriminators. To give the generated images richer details, we also introduced a penalty mechanism based on a Monte Carlo search in InsulatorGAN. In addition, we proposed a multi-scale discriminator structure based on a multi-task learning mechanism to improve the quality of the generated images. Finally, experiments on the InsuGenSet and CPLID datasets demonstrated that our model outperforms existing state-of-the-art models by advancing both the resolution and quality of the generated images as well as the position of the detection box in the images.


Sign in / Sign up

Export Citation Format

Share Document