Diversity and functions of bacterial communities in water and sediment from the watershed of the Tama River flowing a highly urbanized area

2021 ◽  
Author(s):  
Nanami Mizusawa ◽  
Md. Shaheed Reza ◽  
Chiharu Oikawa ◽  
Satomi Kuga ◽  
Mariko Iijima ◽  
...  
2020 ◽  
Author(s):  
Tang Liu ◽  
Jiawen Wang ◽  
Shufeng Liu ◽  
Qian Chen ◽  
Chunmiao Zheng ◽  
...  

<p>Bacterial communities are essential to the biogeochemical cycle in riverine ecosystems. However, the integrated biogeography and assembly process of planktonic and sedimentary bacterial communities in large rivers is still poorly understood. Here, the study provided the spatiotemporal pattern of bacterial communities in the Yangtze River of 4300 km continuum, which is the largest river in Asia. We found that the taxa in sediments are the main contributors to the bacterial diversity of the river ecosystem since sediments sub-group took 98.8% of the total 38, 904 Operational Taxonomic Units (OTUs) observed in 280 samples. Seasonal differences in bacterial communities were statistically significant in water, whereas bacterial communities in both water and sediment were geographically clustered according to five types of landforms: mountain, foothill, basin, foothill-mountain, and plain. Interestingly, the presence of two huge dams resulted in a drastic fall of bacterial taxa in sediment immediately downstream due to severe riverbed scouring. The integrity of the biogeography was satisfactorily interpreted by the combination of neutral and species sorting perspectives in meta-community theory for bacterial communities in flowing water and sediment. Although deterministic process had dominant influence on assembly processes in water and sediment communities, homogeneous selection was the main contributor in water, while combination of homogeneous selection and variable selection contributed selection process in sediment. In addition, homogenizing dispersal played more important role in community assembly process in sediment than water. Our study fills a gap in understanding of biogeography and assembly process of bacterial communities in one of the world’s largest river and highlights the importance of both planktonic and sedimentary communities to the integrity of bacterial biogeographic patterns in a river subject to varying natural and anthropogenic impacts.</p>


2020 ◽  
Vol 86 (4) ◽  
pp. 280-289
Author(s):  
Alison K Aceves ◽  
Paul D Johnson ◽  
Carla L Atkinson ◽  
Brian C van Ee ◽  
Stephen A Bullard ◽  
...  

ABSTRACT Herein, we characterized the digestive gland (‘gut’) bacterial community (microbiome) of the Ohio pigtoe, Pleurobema cordatum (Rafinesque, 1820), using 16S rRNA gene sequencing. Two populations were compared: wild P. cordatum (n = 5) from the Tennessee River and P. cordatum (n = 9) relocated to artificial mesocosms and exposed to various thermal regimes for 2 weeks. We also characterized the bacterial communities from the habitat (water and sediment) of these wild and mesocosm-held populations. The gut microbiome of wild P. cordatum was dominated by members of the bacterial phylum Tenericutes (72%). By contrast, the gut microbiome of mesocosm-held P. cordatum was dominated by members of the bacterial phylum Proteobacteria (64%). We found no temperature-associated difference in the gut microbiome of mesocosm-held P. cordatum. The bacterial communities of water and sediment from the Tennessee River were diverse and distinct from those of the studied mussels. By contrast, the bacterial communities of water and sediment in the mesocosms were dominated by Proteobacteria. These results suggest that when the studied mussels were moved into artificial rearing environments, their gut microbiome shifted to reflect that of their habitat (i.e. an increase in Proteobacteria). Moreover, the abundance of Tenericutes (also previously reported in other unionids) was reduced from 72% in wild mussels to 3% in mesocosm-held mussels. As a result, we think that mesocosm-held P. cordatum became dysbiotic, which could explain the observed wasting syndrome and associated trickling mortalities in captive P. cordatum.


2019 ◽  
pp. 147-150
Author(s):  
Ain Heinaru ◽  
Eeva Heinaru ◽  
Ene Talpsep ◽  
Jaak Truu

The phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shaleprocessing is discharged via channels and rivers Kohtla and Purtse into the Baltic Sea withoutany treatment. The leachate from processed oil shale contains several organic and inorganiccompounds (oil fractions, sulphides, polycyclic aromatic hydrocarbons). The impact ofleachate on microbiological characteristics of river water and sediment as well as onabundance, activity and structure of biodegradative consortia have been studied. Themetabolic and genetic diversity of phenol-utilizing bacteria was characterized. Pollutionmarkedly altered all aspects of the studied microbial diversity. The structure and functioningof the bacterial communities changed significantly along the river and revealed remarkableadaptation to phenolic compounds in environment. The results demonstrate multiplicity ofcatabolic types of degradation of phenol and p-cresol and the existence of characteristicassemblages of species and specific genotypes among the strains isolated from the pollutedriver water.


2021 ◽  
Vol 4 ◽  
Author(s):  
E. Gozde Ozbayram ◽  
Latife Koker ◽  
Reyhan Akçaalan ◽  
Fatih Aydın ◽  
Meriç Albay

Lake Iznik is one of the largest lake of Turkey covering 308 km2 surface area with 65 m max. depth. The lake has alkaline characteristics (Akcaalan et al. 2014). It is a mesotrophic lake that becomes stratified between June-September and well mixed between October-April. Although there are almost 200 lakes in Turkey, there is very little published research focused on the bacterial diversity structures (Ozbayram et al. 2020.) The specific objective of this study was to evaluate the bacterial community profile in the surface water and sediment of the alkaline lake during the winter turnover. For this purpose, the samples were collected from 6 stations (5 on the shore and 1 in the middle of the lake) in February 2020 when the lake was completely mixed. In addition to the surface water and sediment samples, a sample was also collected from the depth of 40 m from the station located in the mid-lake. The water samples were filtered from a 0.22 µm filter and the sediment samples were taken into sterile plastic containers. The total DNAs were extracted using the NucleoSpin® Soil Kit (Macherey-Nagel, Germany) following the manufacturer’s instructions. Bacterial community profiles of the samples were analyzed by 16S rRNA gene-targeted sequencing using Illumina® MiSeq™. Physicochemical parameters were measured as explained by Ozbayram et al. 2020. The pH was between 8.29-8.67 and the Electrical Conductivity (EC) was in the range of 734-996 µS/cm (Suppl. material 1 -Table S1). Whereas the Dissolved Oxygen (DO) levels were measured as 10.12-11.65 mg/L in the surface waters, it was 9.72 mg/L in the 40 m. Among all samples, the highest value of the Shannon and Pielou's evenness indices were calculated for the surface water sample collected from station 2 indicated a more evenly distributed and diverse bacterial community (Suppl. material 1-Table S2). Bacterial diversity patterns of the samples were presented at the phylum level in Figure 1. In compliance with the literature on freshwaters (Zhang et al. 2014), the community was dominated by Proteobacteria species, and higher abundances were determined in the sediment samples (ranged 40.4-50.0 %). Especially, Gammaproteobacteria, Deltaproteobacteria were the major classes of this phylum in the sediment. On the other hand, the composition of bacterial communities in water samples showed a difference in which Actinobacteria and Bacteroidetes (in particular, the order: Flavobacteriales) were also predominated the communities. However, the community profile slightly differed with depth (station 6). At the genus level, most of the reads were not assigned any genera. Ilumatobacter, Fluviicola, and Flavobacterium were represented 3.4-7.1% of the bacterial community of water samples. Fig. 1 Overall, due to the complete mixing conditions in the lake, there was a homogenization of the bacterial communities and the diversity patterns were quite similar in the water samples. In further studies, samples will be collected during the stratification and the community structures will be compared.


2016 ◽  
Vol 60 ◽  
pp. 766-773 ◽  
Author(s):  
Jianguo Guo ◽  
Longhao Zhao ◽  
Weihong Lu ◽  
Hongliang Jia ◽  
Yeqing Sun

Sign in / Sign up

Export Citation Format

Share Document