3D printing: a valuable resource in human anatomy education

2014 ◽  
Vol 90 (1) ◽  
pp. 64-65 ◽  
Author(s):  
Mauro Vaccarezza ◽  
Veronica Papa
2018 ◽  
Vol 71 ◽  
pp. 132-153 ◽  
Author(s):  
Bernhard Preim ◽  
Patrick Saalfeld

Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane

There are various combinations of 3D printing technology and medical study process. The aim of this study was to summarize our first experience on 3D printing and outline how 3D printed models can be successfully used in Human Anatomy modern teaching and learning. In 2018 autumn semester, together with traditional methods, a three-dimensional (3D) printing has been introduced into Human Anatomy curriculum at Department of Morphology. In practical classes 39 groups of students from Faculty of Medicine 1st year together with 3 tutors used 3 different open source softwares to create anatomical models and prepared them for printing process. All anatomical models were produced using an FDM 3D printer, a Prusa i3 MK2 (Prusa Research). As methods for data collection were used our observational notes during teaching and learning, analysis of discussions between tutors and students, comments on the preparing and usability of the created and printed models. 3D printing technology offered students a powerful tool for their teaching, learning and creativity, provided possibility to show human body structures or variations. Presented data offered valuable information about current situation and these results were suitable for the further development of the Human Anatomy study course.


2021 ◽  
Author(s):  
◽  
Ana Morris

<p>Novel technologies that produce medical models which are synthetic equivalents to human tissue may forever change the way human anatomy and medicine are explored. Medical modelling using a bitmap-based additive manufacturing workflow offers exciting opportunities for medical education, informed consent practices, skills acquisition, pre-operative planning and surgical simulation. Moving medical data from the 2D-world to tactile, highly detailed 3D-printed anatomical models may significantly change how we comprehend the body; revamping everything – from medical education to clinical practice.  Research Problem The existing workflow for producing patient-specific anatomical models from biomedical imaging data involves image thresholding and iso-surface extraction techniques that result in surface meshes (also known as objects or parts). This process restricts shape specification to one colour and density, limiting material blending and resulting in anatomically inequivalent medical models. So, how can the use of 3D-printing go beyond static anatomical replication? Imagine pulling back the layers of tissue to reveal the complexity of a procedure, allowing a family to understand and discuss their diagnosis. Overcoming the disadvantages of static medical models could be a breakthrough in the areas of medical communication and simulation. Currently, patient specific models are either rigid or mesh-based and, therefore, are not equivalents of physiology.  Research Aim The aim of this research is to create tangible and visually compelling patient-specific prototypes of human anatomy, offering an insight into the capabilities of new bitmap-based 3D-printing technology. It proposes that full colour, multi-property, voxel-based 3D-printing can emulate physiology, creating a new format of visual and physical medical communication.  Data Collection and Procedure For this study, biomedical imaging data was converted into multi-property 3D-printed synthetic anatomy by bypassing the conversion steps of traditional segmentation. Bitmap-based 3D-printing allows for the precise control over every 14-micron material droplet or “voxel”.  Control over each voxel involves a process of sending bitmap images to a high-resolution and multi-property 3D-printer. Bitmap-based 3D-printed synthetic medical models – which mimicked the colour and density of human anatomy – were successfully produced.  Findings This research presented a novel and streamlined bitmap-based medical modelling workflow with the potential to save manufacturing time and labour cost. Moreover, this workflow produced highly accurate models with graduated densities, translucency, colour and flexion – overcoming complexities that arise due to our body’s opaqueness. The presented workflow may serve as an incentive for others to investigate bitmap-based 3D-printing workflows for different manufacturing applications.</p>


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
William Albabish ◽  
Genevieve S. Newton ◽  
Lorraine Jadeski

2008 ◽  
Vol 72 (6) ◽  
pp. 145 ◽  
Author(s):  
Aimee L. Limpach ◽  
Parham Bazrafshan ◽  
Paul D. Turner ◽  
Michael S. Monaghan

2015 ◽  
Vol 20 (1) ◽  
pp. 29847 ◽  
Author(s):  
Yousef AbouHashem ◽  
Manisha Dayal ◽  
Stephane Savanah ◽  
Goran Štrkalj

Sign in / Sign up

Export Citation Format

Share Document