Dynamic response of polysilicon microcantilevers to enzymatic hydrolysis of urea

Author(s):  
Renny Edwin Fernandez ◽  
Enakshi Bhattacharya ◽  
Anju Chadha
2006 ◽  
Vol 64 (3) ◽  
pp. 419-424 ◽  
Author(s):  
A. Chenite ◽  
S. Gori ◽  
M. Shive ◽  
E. Desrosiers ◽  
M.D. Buschmann

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1703
Author(s):  
Mukhtar Nuhu Yahya ◽  
Hüseyin Gökçekuş ◽  
Derin Orhon ◽  
Bülent Keskinler ◽  
Ahmet Karagunduz ◽  
...  

1. Background: Urea is the main product of the nitrogenous breakdown of protein metabolism in mammals. In this study, process intensification for enzymatic hydrolysis of urea by urease enzyme (jack bean urease) was examined in a membrane reactor. 2. Methods: Batch and continuous enzymatic hydrolysis reactions were performed at different substrate concentrations to determine the digestibility and affinity of the substrate with that of the enzyme. The hydrolysate samples were obtained by an optimized continuous enzyme membrane reactor (EMR) coupled with an ultra-filtration membrane (250 kDa). Feed concentration varied from 100 to 500 mg/L. Laboratory experiments were conducted at room temperature (20 ± 1 °C), with a flow rate of 20 mL/min, urease concentration of 0.067 g/L, ionic strength (I = 0, 0.01, 0.05), and ammonium nitrogen addition of (0, 100 mg/L, 200 mg/L, 500 mg/L). Moreover, the effect of ionic strength, ammonium nitrogen concentration, feed concentration, and enzyme concentration on urea hydrolysis was examined. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX) analysis were used to identify the physicochemical properties as well as the elemental composition of the Ultra-Filtration membrane used in this study. 3. Results: The study revealed that higher ionic strength and higher concentrations of NH4SO2 and ammonium nitrogen (NH3-N) inhibithydrolysis of urea by reducing the urease enzyme activity in the system over time. 4. Conclusions: Herein, a sustainable alternative for the conversion of urea to ammonia by utilizing urease in an EMR was demonstrated.


1980 ◽  
Vol 58 (12) ◽  
pp. 1335-1344 ◽  
Author(s):  
Nicholas E. Dixon ◽  
Peter W. Riddles ◽  
Carlo Gazzola ◽  
Robert L. Blakeley ◽  
Burt Zerner

Acetamide and N-methylurea have been shown for the first time to be substrates for jack bean urease. In the enzymatic hydrolysis of urea, formamide, acetamide, and N-methylurea at pH 7.0 and 38 °C, kcat has the values 5870, 85, 0.55, and 0.075 s−1, respectively. The urease-catalyzed hydrolysis of all these substrates involves the active-site nickel ion(s). Enzymatic hydrolysis of the following compounds could not be detected: phenyl formate, p-nitroformanilide, trifluoroacetamide, p-nitrophenyl carbamate, thiourea, and O-methylisouronium ion. In the enzymatic hydrolysis of urea, the pH dependence of kcat between pH 3.4 and 7.8 indicates that at least two prototropic forms are active. Enzymatic hydrolysis of urea in the presence of methanol gave no detectable methyl carbamate. A mechanism of action for urease is proposed which involves initially an O-bonded complex between urea and an active-site Ni2+ ion and subsequently an O-bonded carbamato–enzyme intermediate.


2007 ◽  
Vol 55 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Günay Demirel ◽  
GÜNeri Akovali ◽  
Abdurrahman Tanyolac ◽  
Nesrin Hasirci

2017 ◽  
Vol 29 (1) ◽  
pp. 1-7 ◽  
Author(s):  
R. Serrato-Millán ◽  
L. Medina-Torres ◽  
F. Calderas ◽  
B. L. España-Sánchez ◽  
M. Estevez ◽  
...  

Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Sign in / Sign up

Export Citation Format

Share Document