Time series forecasting: problem of heavy-tailed distributed noise
AbstractTime series forecasting has been the area of intensive research for years. Statistical, machine learning or mixed approaches have been proposed to handle this one of the most challenging tasks. However, little research has been devoted to tackle the frequently appearing assumption of normality of given data. In our research, we aim to extend the time series forecasting models for heavy-tailed distribution of noise. In this paper, we focused on normal and Student’s t distributed time series. The SARIMAX model (with maximum likelihood approach) is compared with the regression tree-based method—random forest. The research covers not only forecasts but also prediction intervals, which often have hugely informative value as far as practical applications are concerned. Although our study is focused on the selected models, the presented problem is universal and the proposed approach can be discussed in the context of other systems.