The roles of betulinic acid on circulating concentrations of creatine kinase and immunomodulation in mice infected with chloroquine-susceptible and resistant strains of Plasmodium berghei

Author(s):  
John Oludele Olanlokun ◽  
Praise Oghenegare Okoro ◽  
Olufunso Olabode Olorunsogo
2021 ◽  
Author(s):  
Oludele John Olanlokun ◽  
Praise Oghenegare Okoro ◽  
Olufunso Olabode Olorunsogo

Abstract Complete malarial therapy depends largely on the immunological and inflammatory response of the host to the invading potentials of malarial parasite. In this study, we evaluated the roles of betulinic acid on immunological response, anti-inflammatory potentials and concentrations of creatine kinase in mice infected with chloroquine susceptible (NK 65) and resistant (ANKA) strains of Plasmodium berghei. Serum Interlukins 1β and 6 (IL-1 β, IL-6), tumour necrosis factor alpha (TNFα), immunoglobulins G and M (IgG and IgM), C-reactive protein (CRP) and creatine kinas (CK). Furthermore, liver marker enzymes; aspartate, alanine aminotransferases (AST and ALT, respectively) and gamma glutammyl transferase (GGT) were determined. The results showed that betulinic acid dose dependently decreased IL-1 β, IL-6, TNFα and CRP relative to the infected control. The IgG and IgM levels significantly increased in both models while CK decreased insignificantly in both models. Serum AST, ALT and GGT significantly decreased compared to the infected control. These results showed that betulinic acid has anti-inflammatory, immunomodulatory and mitigating effects on malarial infection in mice. Furthermore, the down-regulatory effect of betulinic acid on CK is indicative of decrease in muscle injury which is a major pathological concern in malarial infection and treatment.


1997 ◽  
Vol 41 (7) ◽  
pp. 1500-1503 ◽  
Author(s):  
F F Franssen ◽  
L J Smeijsters ◽  
I Berger ◽  
B E Medinilla Aldana

We present an evaluation of the antiplasmodial and cytotoxic effects of four plants commonly used in Guatemalan folk medicine against malaria. Methanol extracts of Simarouba glauca D. C., Sansevieria guineensis Willd, Croton guatemalensis Lotsy, and Neurolaena lobata (L.)R.Br. significantly reduced parasitemias in Plasmodium berghei-infected mice. Dichloromethane fractions were screened for their cytotoxicities on Artemia salina (brine shrimp) larvae, and 50% inhibitory concentrations were determined for Plasmodium falciparum in in vitro cultures. Both chloroquine-susceptible and -resistant strains of P. falciparum were significantly inhibited by these extracts. Of all dichloromethane extracts, only the S. glauca cortex extract was considered to be toxic to nauplii of A. salina in the brine shrimp test.


Author(s):  
Nabanita Kar ◽  
Santanu Ghosh ◽  
Leena Kumari ◽  
Shreyasi Chakraborty ◽  
Tanmoy Bera

Objective: The objective of this work was to screen a number of compounds for their antileishmanial efficacy and cytotoxicity profiling.Methods: Curry leaf oil, cypress oil and spikenard oil were identified by gas chromatography-mass spectrometry (GC/MS) analysis. Betulinic acid, spikenard oil, cypress oil and curry leaf oil were evaluated for their in vitro antileishmanial activity against Leishmania donovani AG83 wild-type, sodium stibogluconate resistant (SSG-resistant), paromomycin (PMM-resistant) and GE1 field type strains on axenic and cellular amastigote model and compared the results with standard drugs used to treat leishmaniasis.Results: Betulinic acid showed strong antileishmanial activity against wild-type (SI= 192.8), SSG-resistant (SI= 19.3) and GE1 strains (SI= 100), whereas cypress oil has produced highest antileishmanial activity against PMM-resistant strains (SI= 15.09) among all the tested drugs. The data obtained also revealed that cypress oil had the maximum CC50 value of 452.9 μl among all standard and tested drugs.Conclusion: All tested drugs had antileishmanial property but among them, betulinic acid possess strong antileishmanial activity in case of both wild-type and drug-resistant leishmaniasis.


2003 ◽  
Vol 58 (1-2) ◽  
pp. 70-75 ◽  
Author(s):  
Girma M. Woldemichael ◽  
Maya P. Singh ◽  
William M. Maiese ◽  
Barbara N. Timmermann

The Argentinean legume Caesalpinia paraguariensis Burk. (Fabaceae) was selected for further fractionation work based on the strong antimicrobial activity of its CH2Cl2-MeOH (1:1 v/v) extract against a host of clinically significant microorganisms, including antibiotic resistant strains. 1D and 2D NMR enabled the identification of the novel benzoxecin derivative caesalpinol along with the known compounds bilobetin, stigma-5-en-3-O-β-6′-stearoyl-glucopyranoside, stigma-5-en-3-β-6′-palmitoylglucopyranoside, stigma-5-en-3-β-glucopyranoside, oleanolic acid, 3-O-(E)-hydroxycinnamoyl oleanolic acid, betulinic acid, 3-O-(E)- hydroxycinnamoyl betulinic acid, and lupeol from the active fractions. Oleanolic acid was found active against Bacillus subtilis and both methicillin-sensitive and -resistant Staphylococcus aureus with MICs of 8 (17.5 μm), 8 and 64 (140 μm) μg/ml, respectively. The rest of the compounds, however, did not show activity


2012 ◽  
Vol 56 (9) ◽  
pp. 4685-4692 ◽  
Author(s):  
Fabián E. Sáenz ◽  
Tina Mutka ◽  
Kenneth Udenze ◽  
Ayoade M. J. Oduola ◽  
Dennis E. Kyle

ABSTRACTNew drugs to treat malaria must act rapidly and be highly potent against asexual blood stages, well tolerated, and affordable to residents of regions of endemicity. This was the case with chloroquine (CQ), a 4-aminoquinoline drug used for the prevention and treatment of malaria. However, since the 1960s,Plasmodium falciparumresistance to this drug has spread globally, and more recently, emerging resistance to CQ byPlasmodium vivaxthreatens the health of 70 to 320 million people annually. Despite the emergence of CQ resistance, synthetic quinoline derivatives remain validated leads for new drug discovery, especially if they are effective against CQ-resistant strains of malaria. In this study, we investigated the activities of two novel 4-aminoquinoline derivatives, TDR 58845,N1-(7-chloro-quinolin-4-yl)-2-methyl-propane-1,2-diamine, and TDR 58846,N1-(7-chloro-quinolin-4-yl)-2,N2,N2-trimethylpropane-1,2-diamine and found them to be active againstP. falciparumin vitroandPlasmodium bergheiin vivo. TheP. falciparumclones and isolates tested were susceptible to TDR 58845 and TDR 58846 (50% inhibitory concentrations [IC50s] ranging from 5.52 to 89.8 nM), including the CQ-resistant reference clone W2 and two multidrug-resistant parasites recently isolated from Thailand and Cambodia. Moreover, these 4-aminoquinolines were active against early and lateP. falciparumgametocyte stages and cured BALB/c mice infected withP. berghei. TDR 58845 and TDR 58846 at 40 mg/kg were sufficient to cure mice, and total doses of 480 mg/kg of body weight were well tolerated. Our findings suggest these novel 4-aminoquinolines should be considered for development as potent antimalarials that can be used in combination to treat multidrug-resistantP. falciparumandP. vivax.


2002 ◽  
Vol 70 (2) ◽  
pp. 512-516 ◽  
Author(s):  
Eiji Nagayasu ◽  
Koichi Nagakura ◽  
Mayumi Akaki ◽  
Gen Tamiya ◽  
Satoshi Makino ◽  
...  

ABSTRACT Experimental severe malaria (ESM; also known as experimental cerebral malaria) is an acute lethal syndrome caused by infection with Plasmodium berghei ANKA and associated with coma and other neurological manifestations in mice. Various inbred strains of mice exhibit differences in susceptibility to the development of ESM. For example, C57BL/6 mice are highly susceptible and DBA/2 mice are relatively resistant. We report here the results of a genomewide scan for host genomic regions that control resistance to ESM in DBA/2 mice using an F2 intercross population of susceptible and resistant strains. A region of mid-chromosome 18 was found to be a major determinant of resistance to ESM.


Sign in / Sign up

Export Citation Format

Share Document