Melatonin Increases Life Span, Restores the Locomotor Activity, and Reduces Lipid Peroxidation (LPO) in Transgenic Knockdown Parkin Drosophila melanogaster Exposed to Paraquat or Paraquat/Iron

Author(s):  
Hector Flavio Ortega-Arellano ◽  
Marlene Jimenez-Del-Rio ◽  
Carlos Velez-Pardo
Toxicology ◽  
2012 ◽  
Vol 294 (1) ◽  
pp. 50-53 ◽  
Author(s):  
E. Bonilla ◽  
R. Contreras ◽  
S. Medina-Leendertz ◽  
M. Mora ◽  
V. Villalobos ◽  
...  

2019 ◽  
Vol 23 (3) ◽  
pp. 370-374
Author(s):  
D. V. Petrovskii ◽  
L. P. Zakharenko

Several different mitochondrial clades have been found in natural populations of Drosophila melanogaster. Most often, the difference is in single nucleotide substitutions, some of which are conservative. Some clades are rare, and others dominate. It has been reported that clade III dominates over clades V and VI in seven populations of D. melanogaster. We compared D. melanogaster strains with different mitotypes by locomotor activity (using TriKinetics Drosophila Activity Monitor), energy expenditure (by indirect calorimetry, based on measuring oxygen consumption) and life span (under extreme conditions at 29 °C). The nuclear genomes of these strains were aligned for several generations by backcrosses. According to our data, individuals with the mitotype from clade III had a higher level of locomotor activity and longer life span. In terms of energy expenditure, the strains studied did not differ. However, the same level of energy expenditure may be differently distributed between the state of activity and the state of rest or sleep. If the energy expenditure during the sleep in flies with different locomotor activity is the same, then an individual with the same overall energy expenditure can move a greater distance or be active longer. This can be interpreted as an advantage of the strain with the mitotype from clade III compared to the other two mitotypes studied. If individuals have different energy expenditure values at rest, the strains with lower energy expenditure at rest spend less energy during forced inactivity. In this case, the mitotype from clade III should also be advantageous. What nucleotide substitutions in the mitotype from clade III can provide an adaptive advantage is not clear yet. We assume that individuals with widespread clade М(III) may have adaptive advantages compared to other mitotypes due to their greater locomotor activity even with the same energy expenditure. Further studies are required, for mitotypes are polymorphic for single nucleotide polymorphism not only between but also within the clades.


2012 ◽  
Vol 03 (07) ◽  
pp. 1037-1040 ◽  
Author(s):  
V. V. Navrotskaya ◽  
G. Oxenkrug ◽  
L. I. Vorobyova ◽  
P. Summergrad

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


Sign in / Sign up

Export Citation Format

Share Document