Suppression of Mitochondria-Related Bioenergetics Collapse and Redox Impairment by Tanshinone I, a Diterpenoid Found in Salvia miltiorrhiza Bunge (Danshen), in the Human Dopaminergic SH-SY5Y Cell Line Exposed to Chlorpyrifos

Author(s):  
Flávia Bittencourt Brasil ◽  
Fhelipe Jolner Souza de Almeida ◽  
Matheus Dargesso Luckachaki ◽  
Evandro Luiz Dall’Oglio ◽  
Marcos Roberto de Oliveira
Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2043
Author(s):  
Yuanyuan Li ◽  
Zhuoni Hou ◽  
Feng Su ◽  
Jipeng Chen ◽  
Xiaodan Zhang ◽  
...  

Salvia mltiorrhiza Bunge (SMB) is native to China, whose dried root has been used as medicine. A few chromatographic- or spectrometric-based methods have already been used to analyze the lipid-soluble components in SMB. However, the methodology of qNMR on the extracts of fresh SMB root has not been verified so far. The purpose of this study was to establish a fast and simple method to quantify the tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone in fresh Salvia Miltiorrhiza Bunge root without any pre-purification steps using 1H-NMR spectroscopy. The process is as follows: first, 70% methanol aqueous extracts of fresh Salvia Miltiorrhiza Bunge roots were quantitatively analyzed for tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone using 1H-NMR spectroscopy. Different internal standards were tested and the validated method was compared with HPLC. 3,4,5-trichloropyridine was chosen as the internal standard. Twelve samples of Salvia Miltiorrhiza Bunge were quantitatively analyzed by qNMR and HPLC respectively. Then, the results were analyzed by chemometric approaches. This NMR method offers a fast, stable, and accurate analysis of four ketones: tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone in fresh roots of Salvia Miltiorrhiza Bunge.


2002 ◽  
Vol 16 (7) ◽  
pp. 616-620 ◽  
Author(s):  
Sung Young Kim ◽  
Tae Cheol Moon ◽  
Hyeun Wook Chang ◽  
Kun Ho Son ◽  
Sam Sik Kang ◽  
...  

2020 ◽  
Vol 20 (28) ◽  
pp. 2520-2534
Author(s):  
He Huang ◽  
Chuanjun Song ◽  
Junbiao Chang

: Tanshinones are a class of bioactive compounds present in the Chinese herbal medicine Danshen (Salvia miltiorrhiza Bunge), containing among others, abietane diterpene quinone scaffolds. Chemical synthesis and biological activity studies of natural and unnatural tanshinone derivatives have been reviewed in this article.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yeni Lim ◽  
Oran Kwon

Abstract Objectives Increasing attention has been paid to a range of botanical food supplement that help to maintain vascular health. Multiple components in botanical foods are expected to be working in concert with various targets. In a previous our animal study, Phellinus baumii and Salvia miltiorrhiza Bunge (PS) ameliorated endothelial and vascular dysfunction in a platelet activation rat model. This study aimed to provide the components, target molecules, phenotypes, signaling pathways, and investigate the mechanism of PS on vascular health. Methods Network biology analysis was based on the data from two clinical trials. The first clinical trial was performed in healthy subjects using high-fat-induced vascular dysfunction model. The second clinical trial was performed in healthy smokers. Differential markers obtained from clinical data, Affymetrix microarray, metabolomics, together with ingredient of PS, were mapped onto the network platform termed the context-oriented directed associations. A network of “component-target-phenotype-pathway” was constructed. Results The resulting vascular health network demonstrates that the components of PS are linked various target molecules for adhesion molecule production, platelet activation, endothelial inflammation, vascular dilation, and mitochondrial metabolism and detoxification, implicated with various metabolic pathways. Conclusions Using network biology methods, this study revealed the components and their target molecules, phenotypes, signaling pathways and provided wider information to support the synergistic mechanisms of PS on vascular health. Funding Sources This research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science & ICT and the BK21PLUS of the National Research Foundation.


Sign in / Sign up

Export Citation Format

Share Document