Modelling Biogas Production Kinetics of Various Heavy Metals Exposed Anaerobic Fermentation Process Using Sigmoidal Growth Functions

2019 ◽  
Vol 11 (9) ◽  
pp. 4837-4848 ◽  
Author(s):  
Yonglan Tian ◽  
Kun Yang ◽  
Lei Zheng ◽  
Xiaoxi Han ◽  
Yanli Xu ◽  
...  
Author(s):  
Monika Hejna ◽  
Elisabetta Onelli ◽  
Alessandra Moscatelli ◽  
Maurizio Bellotto ◽  
Cinzia Cristiani ◽  
...  

Sustainable agriculture is aimed at long-term crop and livestock production with a minimal impact on the environment. However, agricultural practices from animal production can contribute to global pollution due to heavy metals from the feed additives that are used to ensure the nutritional requirements and also promote animal health and optimize production. The bioavailability of essential mineral sources is limited; thus, the metals are widely found in the manure. Via the manure, metallic ions can contaminate livestock wastewater, drastically reducing its potential recycling for irrigation. Phytoremediation, which is an efficient and cost-effective cleanup technique, could be implemented to reduce the wastewater pollution from livestock production, in order to maintain the water conservation. Plants use various strategies for the absorption and translocation of heavy metals, and they have been widely used to remediate livestock wastewater. In addition, the pollutants concentrated in the plants can be exhausted and used as heat to enhance plant growth and further concentrate the metals, making recycling a possible option. The biomass of the plants can also be used for biogas production in anaerobic fermentation. Combining phytoremediation and biorefinery processes would add value to both approaches and facilitate metal recovery. This review focuses on the concept of agro-ecology, specifically the excessive use of heavy metals in animal production, the various techniques and adaptations of the heavy-metal phytoremediation from livestock wastewater, and further applications of exhausted phytoremediated biomass.


2019 ◽  
Vol 42 (1) ◽  
pp. 150-156
Author(s):  
Grzegorz Wałowski

Abstract The selected techniques were reviewed and their technological aspects were characterized in the context of multi-phase flow for biogas production. The conditions of anaerobic fermentation for pig slurry in a mono-substrate reactor with skeleton bed were analysed. The required technical and technological criteria for producing raw biogas were indicated. Design and construction of the mono-substrate model, biogas flow reactor, developed for cooperation with livestock buildings of various sizes and power from 2.5 kW to 40 kW. The installation has the form of a sealed fermentation tank filled with a skeletal deposit constituting a peculiar spatial system with regular shapes and a rough surface. Incorporating a plant in such a production cycle that enables the entire slurry stream to be directed from the cowshed or pig house underrun channels to the reactor operating in the flow mode, where anaerobic digestion will take place, allows to obtain a biogas. The paper presents preliminary results of experimental investigations in the field of hydrodynamic substrate mixing system for biogas flow assessment by the adhesive bed in the context of biogas production. The aim of the study was to assessment and shows the influence of the Reynolds number on the biogas resistance factor for the fermentation process in mono-substrate reactor with adhesive deposit. The measurement results indicate a clear effect of the Reynolds number in relation to the descending flow resistance coefficient for the adhesive bed.


2016 ◽  
Vol 2 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Dikdik Mulyadi ◽  
Lela Mukmilah Yuningsih ◽  
Desi Kusumawati

Biogas is  one of energy   that can be produced by anaerobic fermentation of the organic compounds. The objective of this study was to determine the effectiveness of the utilization of waste of media  mushroom growth (baglog) with sawdust as raw material for biogas with  cow dung  activators. The study was conducted through anaerobic fermentation of the samples containing waste baglog (sample 1) and sawdust (sample 2), with the addition of cow manure activator to each sample. Both of these samples do anaerobic fermentation for 32 days, then measuring the volume of biogas every 4 days for 32 days. Methane content  in  samples 1 and 2 measured by  using gas chromatography. To see the effect of the addition of activators cow dung biogas volume measurement was  carried out with  cow dung without addition baglog waste and sawdust. The process of degradation baglog and sawdust with an activator of cow dung could be observed  in  some of the parameters through  total solids (TS), total volatile solids (TVS), volatile fatty acids (VFA), the degree of acidity (pH), and C/N ratio. The results showed that effectiveness of sample 1 resulted in the everage of total volume biogas 28% higher than  sample 2. The content of methane in  sample 1  and sampel 2  was 54% %, and 0.21% respectively. The fermentation process biogas production in this experiment  was carried out  at pH 7, with a value of TS, TVS and VFA showed a decrease  trend after the fermentation process,  C/N ratiowas  lower than the baglog waste sawdust until day 32 retention time. Keywords: Sawdust, baglog waste, biogas, fermentation, methane DOI : http://dx.doi.org/10.15408/jkv.v2i1.3100


2021 ◽  
Vol 317 ◽  
pp. 04031
Author(s):  
Tiyo Agung Pambudi ◽  
Hadiyanto ◽  
Sri Widodo Agung Suedy

POME or palm oil mill effluent is currently still a waste problem that has not been utilized optimally. POME waste has the potential for renewable energy in the form of biogas, but some research results have shown that production is not optimal, so the addition of cow dung needs to be done to increase biogas production because methanogen bacteria found in cow dung help to maximize the anaerobic fermentation process and methane production. This research was conducted to determine the potential for biogas production from a mixture of POME and cow dung for 25 days by conducting a study of the biogas production process. The results of this study indicate that the biogas pressure increases with the addition of the loading rate, which is 101.102 N/m2/day to 101.107 N/m2/day with a daily biogas production of 0, 24247 liters/day with a total accumulation of biogas production for 25 days of 6.1 liters.


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 137-143 ◽  
Author(s):  
M. Herout ◽  
J. Malaťák ◽  
L. Kučera ◽  
T. Dlabaja

The aim of the work is to determine and analyse concentrations of individual biogas components according to the used raw materials based on plant biomass. The measurement is focused on biogas production depending on input raw materials like maize silage, grass haylage and rye grain. The total amount of plant biomass entering the fermenter during the measurement varies at around 40% w/w, the rest is liquid beef manure. The measured values are statistically evaluated and optimised for the subsequent effective operation of the biogas plant. A biogas plant operating on the principle of wet anaerobic fermentation process is used for the measurement. The biogas production takes place during the wet fermentation process in the mesophile operation at an average temperature of 40°C. The technology of the biogas plant is based on the principle of using two fermenters. It follows from the measured results that maize silage with liquid beef manure in the ratio of 40:60 can produce biogas with a high content of methane; this performance is not stable. At this concentration of input raw material, the formation of undesirable high concentrations of hydrogen sulphide occurs as well. It is shown from the results that the process of biogas production is stabilised by the addition of other components of plant biomass like grass haylage and rye grain and a limitation of the formation of hydrogen sulphide occurs. It follows from the results that the maize silage should form about 80% w/w from the total amount of the plant biomass used.


Sign in / Sign up

Export Citation Format

Share Document